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Ising-Model Surface Tension Using Real-Space Renormalization-Group Methods
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Approximate real-space (cell-type) renormalization-group methods are used to calcu-
late the surface tension between coexisting phases in two- and three-dimensional Ising
models. The results are physically reasonable and show the expected scaling properties
near a critical point. However, there are some problems in reconciling the three-dimen-
sional results with the existence of a roughening transition.

An important problem in studying phase equilib-
ria is to understand the structure of the interface
separating two phases. It is very difficult to cal-
culate the density distribution at an interface and
the interfacial free energy, or surface tension,
from the first principles of statistical mechanics.
We present here an approximate calculation of the
surface tension y' of an Ising ferromagnet, or
lattice gas, based on a real-space (cell-type) re-
normalization-group (HG) transformation. "

The results are encouraging in that very simple
approximations yield results in fair agreement
with the exact answers already available for the
Ising model on a square lattice. " The same ap-
proximations yield sensible results for three-
dimensional Ising models, for which exact an-
swers are not known, and even reliable approxi-
mations based on exact series expansions do not
seem to be available. The dependence of y on
the temperature T near the critical temperature
T, is consistent with the predictions of scaling
arguments. '

Our calculations for the simple cubic (sc) lat-
tice show no evidence for an anomaly in y' at a
roughening transition' temperature T& below T,.
While it is easy to suggest some reasons for this,
there are some troublesome questions of princi-
ple involved. These are discussed further at the

end of the paper.
Two RG calculations of the interfacial profile

and tension for the Landau-Ginzburg-Wilson mod-
el using the & =4-d expansion, with d the dimen-
sionality, have recently appeared. ' While it
seems unlikely that such a model shows a rough-
ening transition, the presumed divergence' of
the interface thickness raises certain other ques-
tions of principle about the applicability of such
calculations to d = 3.

The surface tension of an Ising ferromagnet on
a square lattice with nearest-neighbor interac-
tions can be computed as follows. Consider a
square piece of the lattice containing I-' spins,
with periodic boundary conditions. Assume that
all the vertical nearest-neighbor interactions in
a particular row (hereafter called the "seam" )
have their signs reversed, as indicated in Fig. 1,
so that they represent antiferromagnetic rather
than ferromagnetic coupling. ' The dimensionless
free energy I', equal to the logarithm of the parti-
tion function, can be written as

Il =L2f+Lf ',
where f and f ' are normalized bulk and interfa-
cial contributions to I', and terms diverging less
rapidly than I- as I- tends to infinity have been
omitted from (1). The surface tension is given
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FIG. 1. The solid lines indicate ferromagnetic, the
dashed lines antiferromagnetic bonds on a square lat-
tice, while the small squares are cell spins.

In this approximation the interaction between
nearest-neighbor cell spins is +K'if they are on
the same and -K' if they are on opposite sides
of the seam, preserving the same structure of
interactions as on the original lattice, Fig. 1.

When K exceeds the fixed-point value K*, suc-
cessive iterations of (6) carry K towards infinity,
or T towards zero. If K is large enough, f ' is
—2K to a good approximation, and thus f ' for
any K&K* can be computed by successive itera-
tions using (4) and (6). The results are shown in

Fig. 2 together with the exact answer. "
If near the critical point

by

y = kTf '— (2)
then (5) leads to the result

p=(d —l)v
if the lattice constant is unity.

In the RG procedure' a new set of L'/4 cell
spins, indicated by small squares in Fig. 1, are
introduced, each of which may be thought of as
coupled, by suitable weight factors, to the four
spins (small circles) closest to it on the original
lattice. The RG transformation replaces the
original interactions with a new set of interac-
tions among the cell spins which preserves their
correlation functions and leaves the value of the
partition function unchanged. If the new values
of the various free energies, referring now to
the cell spins, are indicated with primes, we
have

F = F' = (L/2) f '+ (L/2)f".
Hence, by comparison with (2), f' is 4f and

fG/ 2 0 (4)

Note that since the (bulk) correlation length $ is
reduced by a factor of 2 in the RG transforma-
tions, (4) and its genera. lization to d dimensions
may be written in the form

$
" 'f ' = const (5)

along a RG trajectory. '
In order to calculate f ' explicitly we have used

the first-order cumulant approximation"" to the
RG transformation in which the dimensionless
nearest-neighbor coupling K (the exchange energy
J divided by kT) is mapped onto itself by the equa-

predicted by scaling arguments. ' In the first-
order cumulant approximation on a square lat-
tice, p = & =0.994, which should be compared with
the exact values of p = & =1. For the sc lattice the
same approximation yields & =0.803 in place of
the generally accepted value of 0.63. However,
the calculated y, Fig. 3, has a temperature de-
pendence which is at least qualitatively reason-
able.

Other RG approximations may be employed in
conjunction with (5) to calculate y . For example,
Fig. 4 shows the results obtained for a. (100) sur-
face in a body-centered cubic Ising model with
nearest-neighbor interactions using the Kadanoff
lower-bound approximation. " However, it was
necessary, in order to obtain sensible results,
to make a, choice of the Kadanoff P parameter
which minimizes f ' rather than f. And even so,
the value of —dy'/dT (surface entropy) at T =0
is not correct. " [Note that an RG approxima. tion
which yields an upper or lower bound for f will
not, at least in general, yield a corresponding
bound for f ', as the latter must be obtained by
subtraction, Eq. (I).] It has been our experience
that f ' is rather more sensitive than the bulk f
to details of the approximation scheme at low

temperatures, and a method which gives good re-
sults for one surface orientation may yield poor
results for another.

Whereas the difficulties just mentioned can
easily be ascribed to the relatively crude approxi-
mations necessary to construct an explicit RG
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FIG. 2. Exact result (solid) and first-order cumulant
approximation (dashed) for y for the (10) interface on
a square lattice.

0
0

transformation, the absence of any indication of
a roughening transition in an sc lattice at a tem-
perature T&&T, cannot be dismissed so easily.
The reason is that the derivation of (5) makes no
(obvious) use of these approximations. If (5) is
valid for an exec~ HG transformation, it seems
somewhat surprising, though of course not im-
possible, that f ' should exhibit some nonanalytic
behavior at a temperature where $, the bulk cor-
relation length, is generally assumed to be anal-
ytic function of temperature. Of course, it has
not been rigorously established that a roughening
transition actually occurs, and it is conceivable
that, even if it does, there is still no anomaly in
f ' at Tz." Nor should one ignore the possibility
that (5) breaks down for an exact RG, though this
in turn raises some intriguing questions, such as
whether long-range interactions play an impor-
tant role.
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FIG. B. First-order cumulant approximation for y
for the (100) interface in a simple cubic lattice. The
series-expansion T, is indicated by a dot.

FIG. 4. Kadanoff lower-bound approximation (see
text) for y for a (100) interface in a body-centered cu-
bic lattice, with cube edge of length l. The series-
expansion T, is indicated by a dot.

Muller-Krumbhaar for several helpful discus-
sions about the roughening transition.
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A mechanism for spontaneous symmetry breaking and related phenomena and the cor-
responding blocking of metastable states is discussed. It is based on the interaction of
an object with a background of "probes" like photons or particles, etc. , in its natural
surrounding. Applications include quasilocalization of macroscopic bodies, spontaneous
parity nonconservation of sugar crystals, localization of atoms in molecules (Born-Op-
penheimer approximation), stability of metastable compounds, and perhaps also intrin-
sic symmetries of elementary particles.

The object of this Letter is to discuss a quan-

tum mechanical mechanism of spontaneous sym-
metry breaking and related phenomena and the

corresponding blocking of states which are not
eigenstates of the Hamiltonian of the object in

question. This mechanism differs from, and is
much more powerful than, the one usually dis-
cussed in the current literature based on nonsym-
metric solutions to symmetric equations.

Consider an object 0 and a probe I' described
in Hilbert spaces Ifo and H, respectively. For
simplicity H is assumed to be two dimensional;
generalizations will be mentioned at the end. Con-
sider further two orthogonal states py and

of the object and an interaction between object
and probe leading to the following transitions of
the combined system:

tscp p Scp ~ g = 1~ 2~ (1)

where p, is the assumed initial state of the

probe. By linearity this gives the transition for
arbitrary initial state ap, + bp, . If no further
observation is performed on the probe, and the

object alone is considered after separation of the
two, the object has to be described by a density
matrix p

0 on B and the trace has to be taken
over II~.

Taking y, ,q, as basis in H and assuming

(y, ,q, ) = 0, the transition (1) for an initial su-

perposition ap, +bpa with ~a~ +~b~ =1 leads then
for the density matrix p of the object to

(
ab *(V.',V,')

a*b(q, V'.') Ibl'

(2)

This constitutes a "reduction of the state vector"
of a pure initial to a mixed final state of the ob-
ject.

There are two important aspects in this connec-
tion. One is the compatibility of this reduction
with the linearity of the law of motion. This is
the case by construction. The second is the as-
sessment of the relevance and frequency of oc-
currence of this phenomenon. This may be judged
from its connection to the process of measure-
ment. Indeed Eq. (1) is a (simplified) model of a
measurement, in which information is trans-
ferred from the object to the probe in such a way
that subsequent observation of the probe alone
could discriminate exactly between the two cases
where the object is initially in the state y, or

The Possibility of this discrimination re-
quires q, and y, in Eq. (1) to be orthogonal and

thus leads to the exact depletion of the off-diago-
nal elements of po in Eq. (2) if the object alone
is considered, i.e. , even, and in particular, in
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