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Role of Conduction Electrons in Valence Fluctuations

Jon Lawrence and David Murphy
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(Received 11 January 1978)

We report magnetic susceptibility results for the valence fluctuation system Celns._,Sn,.
In the intermediate-valence regime the characteristic energy of spin fluctuations does
not vary monotonically with solute e/a ratio, but oscillates with x in the same manner
as the conduction-electron density of states. This provides experimental evidence for the
role played by the conduction electrons in controlling the spin fluctuation energy.

An important characteristic of valence-fluctua-
tion materials?® is that the 4f electrons demagnet-
ize at low temperatures, i.e., the magnetic sus-
ceptibility evolves from Curie-Weiss-like be-
havior to a temperature-independent value as the
temperature is lowered, indicating a loss of mo-
ment, An implicit assumption in most theories
is that the 4f electrons are coupled to the band
electrons by a hybridization interaction which
broadens the level to a width A=V, *N(ej), in
traditional Friedel-Anderson notation, Although
this view, taken over from the theory of dilute
magnetic alloys, is widely held, we are unaware
of any experiment which clearly proves its valid-
ity for the nondilute intermediate-valence mate-
rials,

In this Letter we report experimental evidence
which supports the notion that the conduction elec-
trons play a key role in the process of demagnet-
ization, The experiment involves studies of the
valence-fluctuation intermetallic alloy Celn,_ Sn,,
In Celn, the cerium ions are trivalent?; it orders
magnetically at low temperature and its anomal-
ous Curie-Weiss susceptibility® and resistance
minimum?® suggest that it is a “Kondo metal,’”!
CeSn, possesses a lattice-constant anomaly? and
susceptibility maximum?® suggestive of weakly-
temperature-dependent intermediate valence,
Both materials exhibit the cubic AuCu, crystal
structure; earlier studies* indicate complete
miscibility in the alloy system. We analyze our
magnetic susceptibility results in terms of the
concept of a characteristic energy for spin fluc-
tuations,’ Tsp(x), and show that T'sy varies pro-
portionally to the conduction-electron density of
states N(eg;x), whose behavior can be inferred
from work on related materials.® We conclude
with a discussion of the microscopic origin of the
observed characteristic energy behavior.

Polycrystalline alloys were prepared by arc
melting the purest commercially available start-
ing materials; the assay indicated the main mag-
netic impurity was iron to a level of 20 ppm, We

analyzed our samples utilizing a metallurgical
microscope, an x-ray powder diffractometer,
and a scanning electron microscope with fluores-
cence attachment, For all concentrations x, the
samples were essentially single phase (we ob-
served 2-3% indium and/or tin in the grain bound-
aries?), exhibited the AuCu, structure, and were
basically homogeneous (stoichiometry variations
across the sample surface were several percent),
Crystallites were irregularly shaped with typical
linear dimensions 30-50 um.? We made duplicate
samples at several concentrations; the lattice
constants and susceptibility were reproducible,
For x 21,0, an extrinsic nonreproducible im-
purity contribution A/T was observed in the sus-
ceptibility below about 10 K (Fig, 1), We have
left this in the data as it has only a negligible ef-
fect on our main results (Fig. 2). High-tempera-
ture annealing increased A by an order of magni-
tude, whereas the lattice constant remained un-
altered, The Curie-Weiss parameters O(x) were
obtained by linear fits to x™! for 7>2.56(x). We
intend to report on these matters in detail in a
forthcoming publication,
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FIG. 1. Inverse magnetic susceptibility x ~1(x;T)
for four representative concentrations x in the system
Celng._ ,Sn,. The solid lines represent Curie~-Weiss—
like behavior, C/(T +6) with the parameters as speci-
fied, where the units of C are 10" % emu K (g Ce)"!,
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FIG. 2. (a) Three estimates of the characteristic tem-
perature Tgg for Celn;_, Sn,—the Curie-Weiss param-
eter O(x) (closed circles), the temperature of the maxi-
mum in the susceptibility T, (x) (open circles), and
the inverse low-temperature susceptibility C/x (10 K)
(triangles). (b) Room-temperature lattice constants vs
x. The dashed lines represent Vegard’s-law behavior
(Ref. 15). Note the oscillatory deviation from Vegard’s
law.

The susceptibilities of four representative sam-
ples are shown in Fig, 1, We note the following
features: At high temperatures, Curie-Weiss—
like behavior is observed for all x, For x =1,0
the susceptibility either exhibits a maximum or
for 1,6 <x <1,9 approaches T=0 with zero slope.
For x <0.6, the susceptibility behaves qualita-
tively differently, namely it continues to increase
strongly to the lowest temperature studied (4.2 K).
For Celn, magnetic order occurs below T',,=9.5
K; preliminary studies indicate that the ordered
state does not occur for x larger than about 0.4,

The demagnetization of intermediate-valence
materials can be discussed in terms of relaxation-
al spin dynamics involving a characteristic ener-
gy for spin fluctuations, kT gy. This behavior has
been substantiated by inelastic neutron scatter-
ing experiments and susceptibility measurements
in Ce,_, Th,*>7 and CePd,.® The spin excitation
spectrum is found to be Lorentzian:

Imx(Q, w)=BTw/(I?+w? (1)

and 2T g can be defined as ZI. It seems that the
following is generally true: For T > Tgr the dc
susceptibility is Curie-Weiss-like,

X(T)=mC/(T+6), (2)

where ©=m,Tsf; for T« Tsr the system demag-
netizes and the susceptibility approaches a finite
value

x(T=0)=m3C/TSF; (3)

the crossover occurring in the vicinity of Tgr
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often takes the form of a maximum in the sus-
ceptibility,® at a temperature T, ,,=m,Tsg. Here
C is the free-ion Curie constant (for cerium

with J=3, C=5760x107% emu K (g Ce)~! and the
m; are dimensionless constants of order unity,

.We thus have three independent order-of-magni-

tude estimates of the characteristic energy,
namely ©(x), C/x(x; T=0), and T, .(x).

The data of Fig. 1 demonstrate that the high-
temperature behavior is indeed Curie-Weiss-like,
and is consistent with m,=1, In Fig. 2(a) we plot
6(x), Tmax(x), and C/x(x; 10 K) for all samples
studied, [We use the value of y at 10 K because
it adequately represents x(0) and because at this
temperature the impurity contribution A/T is
negligible.] For x =1,0 there exists a rough pro-
portionality amongst these parameters, viz,,
C/x(0)~26 and T, ~6/2, Similar behavior has
been observed in ytterbium-based systems,® °
[It should be pointed out that crystal fields will
have negligible effects on ©(x) and T, ,(x) for
the same reasons as in y-Ce,_,Th,,% 7 although
they may affect the properties somewhat for T
<Tsp.)

The striking and unexpected feature of Fig, 2
is that T'sr does not vary in a monotone fashion
with increasing x,' One would expect that since
tin has a larger e/a ratio than indium, tin dilu-
tion would stabilize the intermediate-valence
state of cerium ions to higher temperatures (such
an effect occurs, for example, in Ce,-, M, al-
loys,!? where M is a rare-earth element); hence
the characteristic energy Tsp(x) should simply
increase with increasing x, We argue here that
the oscillation?® observed in T5p(x) in our data
arises because the characteristic energy depends
on the conduction-electron density of states N(€y)
{e.g., either via kT sz ~N(e) V2 or via Tgp
~exp[-1/N(ep)d] as in the Kondo problem} and
because the density of states in this material it-
self oscillates with x, This latter can be inferred
from the work by Toxen, Gambino, and Welsh®
on the closely related nonmagnetic system La-
In,-, Sn,. Utilizing measurements of supercon-
ducting T_’s, linear coefficients of specific heat,
and Debye temperatures, they apply the McMillan
formula to show that N(ey) exhibits an oscillation
with x strikingly similar to that exhibited by
Tse(x). This is demonstrated in Fig., 3. They
indicate that the oscillation is a fairly general
electronic property in a class of related systems
possessing the AuCu, crystal structure, We as-
sume that in Celn,-,Sn, the bare density of states
for conduction electrons (treated prior to hybrid-
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FIG. 3. Electronic behavior of the nonmagnetic, iso-
structural system Lalns ,Sn,. (a) Linear coefficient of
specific heat (Ref. 13). (b) Transition temperatures
for superconductivity (Ref. 6). (c) Density of states at
the Fermi level, obtained in Ref. 6 as discussed in the
text. The density of states for Celn;_,Sn,, prior to hy-
bridization with the 4f states, should be essentially
identical to that exhibited here.

ization with 4f states) exhibits the same behavior
as in Laln,_,Sn,, i.e., that the electronic proper-
ties of the latter are identical to the former ex-
cept for the absence of the 4f electron. We then
conclude that our data provide strong evidence
for the role played by the conduction electrons in
controlling T gg(x).

We next consider the microscopic origin of the
characteristic energy behavior, Two mechanisms
can, in principle, lead to the demagnetization
phenomenon: Kondo-like spin fluctuations, where
the cerium 4f state is always populated, and va-
lence fluctuations (47/- to band-state charge fluctu-
ations) where on the time average the 4f spin is
only fractionally occupied. To determine the
mechanisms involved in Celn,__Sn, we consider
the room-temperature lattice-constant measure-
ment, Fig, 2(b). The data clearly exhibit an
oscillatory deviation from Vegard’s law.!® For
x>0,8, the valence (obtained by interpolation)
increases and decreases with increasing and de-
creasing characteristic energy, This suggests
that valence fluctuations (accompanied by local
cell-volume changes) are dominant, For x <0,8,
the lattice constant suggests trivalence; in addi-
tion, the low-temperature susceptibility differs
from that for x >0,8 in that it does not flatten or
attain a maximum in the vicinity of T sy even
though the magnitude of ©(x) does not differ ap-
preciably in the two regimes, Since Celn, pos-
sesses a resistance minimum? it is natural to

infer that Kondo fluctuations are significant in
determining Tsy for x <0,8; such processes
would not be as strongly coupled to the local cell
volume as direct hopping from a 4f state into

the band, It should also be pointed out that mag-
netic exchange may contribute to O(x) for x <0,4;
hence whereas T gy clearly tracks N(€j) in the
intermediate-valence regime this may not be the
case for the trivalent material, This would be
consistent with the flattening observed in C/x(x;0)
for small x, In any case it is clear that the mag-
netic behavior in the trivalent regime is qualita-
tively different from the behavior in the noninte-
gral-valence regime, It seems reasonable to
infer that in Celn,_, Sn, a real distinction must
be made between “Kondo-metal”” and intermedi-
ate-valence behavior,
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We present evidence for a fundamentally new mechanism for impact-induced desorption,
viz., core-hole Auger decay. We thereby explain why observed thresholds for electron-
stimulated desorption (ESD) of positive ions (O*, OH', and F*) from certain d-band metal
oxides (TiO,, V,05, and WO;) correlate in energy with the ionization potential of the high-
est-lying atomic core levels. We conclude that electron-stimulated desorption is in many
interesting cases an atom-specific, valence-sensitive probe of surfaces.

In this Letter we present evidence for a funda-
mentally new mechanism of impact-stimulated
ion desorption. We show that this mechanism,
namely Auger decay of a core hole,' explains both
the observed thresholds and the large charge
transfers involved in the electron-stimulated de-
sorption (ESD) of positive ions (O*, OH*, and
F*) from maximal-valence transition-metal ox-
ides (TiO,, V,O;, and WO,), whereas the com-
monly accepted picture of ESD*® does not. We
also show that the identification of this new mech-
anism means that ESD is an atom-specific, de-
fect-sensitive probe of bonding at an important
class of surfaces.

The usual picture of ESD, due to Menzel and
Gomer,? and Redhead,® is that the incident beam
excites a bonding electron to an antibonding or
nonbonding state; as a result, the effective po-
tential between surface atom and solid becomes
repulsive, and the atom desorbs. In this model
the theoretical threshold for desorption is typi-
cally predicted to be low, on the order of 15-20
eV. Additionally this model leaves open the ques-
tion of how a highly electronegative atom such as
O, which is typically bonded with a charge be-
tween — 1 and -2, manages to desorb as O*—a
feat which requires the transfer of 2 to 3 elec-
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trons.

The data which underlie our model come from
ESD, Auger and low-energy electron-loss spec-
troscopy (LEELS)* measurements that we have
made on a series of transition-metal—-oxide sam-
ples (TiO,, V,0,, WO,, Cr,0;, and NiO). All of
the samples were single crystals, except the
V,0, which was glassy or polycrystalline, and
were sputter cleaned and electron-beam an-
nealed.

In Fig. 1 we show the O* desorption currents
versus incident electron energy (corrected for
cathode work function) from annealed, . defect-
and impurity-free TiO,, WO,, and V,0,. We al-
so indicate observed LEELS peak energies, by
arrows. Note that for each metal-atom core-
level loss peak there is a correlated threshold in
the O* yield (which lies at a slightly lower ener-
gy than the loss peak, i.e., in the neighborhood
of the loss onset). There is also in each case a
very weak O desorption threshold at the oxygen
L, energy (roughly three decades down from the
saturation O* current—see, e.g., Fig. 1, inset
for TiO,).

At the outset we note that the valence-electron
bonding-antibonding transitions (the arrows in
Fig. 1 at energies < 15 e€V), which in the classi-



