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fects') in the experiments of Se1lers, Anderson,
and Birnbaum' than in our experiments, in which
internal stresses were more severe due to high-
er trap concentrations.
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We propose a practical scheme to calculate structural energies in crystalline semi-
conductors. The method is applied to Si to calculate changes in charge densities and har-
monic energies for TO(l"), TA(X), and C&&

—C&2 distortions. Cubic anharmonic terms
are also found for TO(l ). For the shear modes a proper description of the electron-
electron interaction is found to be vital. Electronic charge densities demonstrate the
importance of dynamic redistribution of valence charge in covalent semiconductors.

In this Letter we introduce a practical scheme
to calculate the charge density and total energy
of crystals as a function of atomic displacements.

The method is not restricted to small displace-
ments, and is here used to calculate directly
from the electronic Hamiltonian both harmonic
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m...= m„+(E„[v',n']-E„[v, n]). (2)

For small v'- v, Eq. (2) leads directly' to the
general perturbation expressions' in terms of the
linear dielectric response function &. In particu-
lar, this implies that all local-field effects' are
included in Eq. (2).

In this paper we calculate structure energies
from Eq. (2) using the local density approxima-
tion for ezehange and correlation. ' Then n(r) and
E„can be written in terms of the eigenfunctions
4,. and eigenvalues E,. of the now well-known band
equations with a self-consistent effective one-par-
ticle potential q (r)'.

where EBs=+,.E,. and Ep1 is 'tile corlection for
over-counting electron-electron interactions in
E~s.' An essential aspect of Eqs. (1)-(3) is that
n(r) must be computed self-consistently, given
v(r) The va, ria. tional condition, however, shows

and anharmonic energies. Employing calculation-
al procedures appropriate for the wide range of
covalent semiconductors, we compute charge den-
sities and from them total energies explicitly ac-
counting for electron-electron interactions through
direct Coulomb integrals and a local functional
for exchange and correlation. ' ' Energies for
representative lattice displacements in Si are
predicted and calculated results are given for the
true charge redistributions, which previously
have been approximated by phenomenological
shells or bond charges. "

Structural properties of solids are derived from
the total energy E~, as a function of the positions
of the nuclei. E„,is a sum of a Coulomb interac-
tions between the positive ions in a negative back-
ground, E», and an electronic part E,&. The lat-
ter is a unique functional of the charge density
n(r)'

E„[v,n]= Jv(r) n(r)d'r+ E[n],
where v(r) is the electron-ion interaction poten-
tial and E[n] is the energy functional comprised
of kinetic and interaction energy of the electrons.
The charge density n(r) is determined for a given
v(r) by the variational condition that E„is mini-
mum for the correct n(r). Structural energies
are changes in the total energy calculated from
the potentials v' and v and densities n' and n, re-
spectively, of the distorted and the undistorted
equilibrium systems

that any errors in n or n' make only second-or-
der corrections to E„,. In particular, if n for
the undistorted crystal is self-consistent, then
corrections to ~„,are second order in any er-
ror in n' and the approximate value for ~«, is
always greater than the exact ~,~.

Evaluation of Eq. (3) is simplest for cases with
crystalline periodicity. Then the sums for E»
and n(r) are made over filled bands and wave vec-
tor k and are readily evaluated by summing over
lattices of "special points'" in the BZ (Brillouin
zone). The lattices are determined by the sym-
metry of the distorted crystal, and the conver-
gence in the lattice spacing indicates the range
of interactions in real space. ' In this manner,
the calculations of n and E„, reduce to carrying
out ordinary band calculations at a few points in
the BZ.

For our investigations we choose Si because it
is a typical covalent semiconductor. Its electron-
ic' and structural properties' are well known.
Yet, to our knowledge no complete calculations
of structural energies have been carried out.
Previous calculations of phonon frequencies have
approximated the screening function ~ ' phenome-
nologically, 4 or expanded e ' in powers of v, 4 or
have started from restricted tight-binding
schemes. ' Here we proceed directly from the
electronic Hamiltonian. For our purposes it is
sufficient to treat the core electrons as rigid,
and for the potential v(r) we use the ionic model
pseudopotential for Si4' of Appelbaum and Hamann
(AH). ' We also take the AH local functional e„,
=0.855(3n/m)'~' for exchange and correlation. AH
showed that for the undistorted crystal the self-
consistent potential is very close to their starting
guess p(G) = v(G)/sf„, (G) where e &, is the free-
electron dielectric function derived with the same
e„,. Here the same starting form for y is used
and the energy is found to first order in self-con-
sistency. That is, for both distorted and undis-
torted case we calculate n and n' from the approx-
imate form for y and use these densities in Eqs.
(2) and (3). We have cheeked' to verify that the
energies are insensitive to the precise forms of
n and n'. Therefore, we expect the non-self-con-
sistent results to be accurate with the one inter-
esting exception discussed below.

With the above approximations we find the cal-
culated equilibrium lattice constant to be 4.7 A
compared to the observed value of 5.431 A. Sim-
ilar results have been found in a fully self-con-
sistent calculation. ' We did not attempt to im-
prove the result (see comment in Ref. 9) and for
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the calculations described below, we corrected
this defect by an ad hoc linear repulsive term
between nearest neighbors to stabilize the lattice
at a = 5.431 A. Inclusion of this term corrects
the restoring forces described below by cancel-
ing erroneous contributions caused by our sys-
tem not being at the equilibrium position. The
added term has no effect on the bulk modulus,
which is 7.0x 10" dyn/cm' compared to the meas-
ured value 9.79 && 10" dyn/cm'.

For representative distortions of the lattice we
have chosen the modes TO(I') and TA(X) and the
shear constant C„-C». Calculations as a func-
tion of displacements have been carried out, and
in Table I are given the contributions to the har-
monic restoring forces in each case and the cu-
bic anharmonic coefficient k„„for TO(I'). The
contributions are divided as in Eqs. (2) and (3),
and C denotes the correction from the linear
term discussed above. This term contributes
because of the change in first-neighbor distance
to second order in the atom displacements. As
we see, the calculated values agree with experi-
ment well, except that the value for TA(X) is too
large.

For the TO(I') mode, both the harmonic and the
lowest-order anharmonic restoring forces for the
TQ phonon are dominated by ion-ion interactions
whereas the band structure and electron-elec-
tron correction tend to cancel and play a secon-
dary role. " Indeed, a second-order perturbation
treatment of the valence charge' as well as a
free-electron calculation4 lead to very similar
results. For the cubic force constant k„„our re-
sult is compared with that calculated from Keat-
ing's parameters, "which he derived by fitting
experimental third-order elastic constants. The

sums over special points converged for the set
corresponding to q = 2 defined in Ref. 6 [requir-
ing only (2) 3 inequivalent k points for the (un)-
distorted lattice] showing that the range of im-
portant forces is s V2a. The redistribution of
the valence electrons [Fig. 1(b)] in the TO mode
reveals that the charge density in the stretched
bond decreases compared to the equilibrium, and
the charge density in the compressed bond in-
creases. This also has been found in self-consis-
tent calculations by Baldereschi and Maschke"
and corresponds to the behavior that one expects
from an overlap of bond orbitals.

Restoring forces for shear modes represented
by wT„at X and C„—C„are directly related to
the directional covalent bonding. These modes
are sensitive to the form of the electronic inter-
actions since they are unstable in the free-elec-
tron approximation. Also, it is interesting to
compare 2a(C» —C„) and Mcu Tz' because the
large difference between these two quantities
found experimentally implies forces beyond sec-
ond neighbor. 4 It is these long-range forces
which have led to the adiabatic shell and bond-
charge models. ' We see from Table I that II
causes a large negative restoring force and that
this is approximately canceled by the increase in
BS for both modes. This is caused primarily by
the increase in first-neighbor distance to second
order in the shear atomic displacement, which
is exactly the same for 2a(C» —C„) and Mu T„'.
It is only with inclusion of the EE term that these
modes are even stable. " The result for 2a(C»
—C„) is close to experiment and Mu T„' is much
smaller than 2a(C» —C»), however the TA fre-
quency is still about 40% too high compared to
experiment.

TABLE I. Comparison of calculated and experimen-
tal harmonic force constants for TO(I), TA(X), and

C« —C,2 modes in Si (in ev/~ ). Also given is the
cubic anharmonic force k„„(in eV/A~) for TO(I'). It
is compared with a value derived from Ref. 11. II, BS,
and EE correspond to the separation of terms in Eqs.
(2) and (3). C is the correction discussed in the text.

040'

M(d TP (T )
2 ~ (C« —C&2) M& TA(x) (3)04CJ

II
BS

C
Total
Expt.

21.56
—5.76

2.71
—4.66
13.85
14.00

—29.25
27.62
16.26

—6.98
7.65
7.32

—24.35
20.70
15.45

—6.98
4.82
2.33

—69.92
18.62

—1.16
0

—52.46
(- 40.51)

FIG. 1. Pseudo charge density in the bond region of
crystalline Si: (a) undistorted lattice, (b) TO(I') pho-
non, and (c), (d) TA(X) phonon.
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Two features indicate the nature of the forces:
Convergence' for C» —C» required q=4 [(10)
20 points in the (un)distorted cases j, whereas
the TA required q=3 [(4) 6 points in the original
fcc BZ]. Thus, long-range forces cause an in-
crease in C„—C» with smaller effect upon ~Tz
in agreement with phenomenological models. '"
Secondly, C„—C„was relatively insensitive to
n(r), whereas u& T„depended greatly on the charge
density n(r), ' implying that the redistribution of
charge is particularly important for the TA mode.
The reason is indicated in the charge density
plots in Figs. 1(c) and 1(d). For the TA distor-
tion there are two inequivalent types of bonds:
Type I maintains inversion symmetry and only
the magnitude of the bonding charge decreases
(for C» —C» all bonds are of this type). For
bonds of Type II, the center of symmetry is lost,
allowing an off-center charge relaxation shown
in Fig. 1(d) reminiscent of a bond-charge dis-
placement. ' The changes in the magnitude and
position of the maximum and the shape of the
bond charge are sensitive to the effective poten-
tial y(r) Thi.s indicates self-consistency will be
important, and, as we have shown above, this
will lower the value for ~ T& bringing the theo-
retical result closer to experiment. Altogether,
Figs. 1(c) and 1(d) show graphically the decrease
in covalent bonding when the tetrahedral symme-
try is destroyed, i.e., this is the basis of direc-
tional covalent "bond-bending"-type forces.

In conclusion, we have described a practical
method for calculating structural energies in
semiconductors within the local density function-
al formalism. Application of the scheme to
TO(I'), TA(X), and C„-C» atomic displacements
in Si demonstrated the following: (1) Harmonic
and anharmonic forces are predicted with no pa-
rameters. For TO(I ) and C» —C» we find excel-
lent agreement with experiment after the first
step in the self-consistent procedure. The soft
TA(X) mode is argued to require calculations
carried further towards self-consistency.
(2) From the convergence of the special-point
summations we find the forces involved to be of
short range in TO(1') and TA(X) and of longer
range for the elastic C» —C» deformation.
(3) Proper inclusion of electron-electron inter-
actions is vital for stability against shear. (4) Dy-
namic charge redistribution has similarities with

phenomenological bond-charge models' but is
much more complex in detail. Altogether the re-
sults presented here are encouraging and suggest
a similar success of this scheme in other appli-
cations, e.g. , in the study of surface reconstruc-
tions of semiconductors.
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