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Ordered Oxygen Overlayer Associated with Chemisorption State on Al(111)
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We present experimental evidence of a unique, ordered chemisorption phase in the ini-
tial interaction of oxygen with the Al(111) surface. At high oxygen exposure or high tem-
perature, this phase is shown to transform irreversibly to a bulklike aluminum oxide.
The measured temperature dependence, as well as the low-energy electron diffraction,
suggests a threefold, centered bonding site. A comparison between calculated and ex-
perimental valence-band density of states for the oxygen-covered Al(111) surface is
made for the estimated oxygen-atom —substrate-surface distance.

Experimental evidence is presented showing
that the initial interaction of oxygen with the (111)
crystal face of aluminum is a two-step process.
Oxygen atoms are shown to chemisorb first at
equivalent sites on the surface in an ordered over-
layer. Upon increasing the oxygen exposure or
the temperature above 170'C, the chemisorbed
oxygen is irreversibly transformed into a bulk-
like oxide film. The chemisorption phase in the
aluminum-oxygen interaction was first observed
for "polycrystalline" films. ' The present work
shows that the two-step oxidation process is
unitlue to the closepacked (111)face of aluminum
and reveals for the first time the presence of an
ordered overlayer with oxygen on a simple fcc
metal. The other two faces investigated, (100)
and (110), form bulklike oxide films for the low-
est observable coverages. '

The existence of a well-defined chemisorption
phase on a free-electron-like metal such as alu-
minum is of great interest since a number of the-
oretical calculations using different techniques
treat chemisorption of oxygen atoms on aluminum
as a model system. ' ' Because of the relatively
simple bulk electronic structure of this system,
calculations have been made self-consistent and
have been performed for different adsorbate-sub-
strate distances. Some calculations explicitly as-
sume a specific adsorption site, but comparisons
of the calculated valence-band density of states
with experimental valence-band photoemission
spectra have been hindered by uncertainty about
the actual Al-0 configurations. In the present
work we deduce a specific position and estimate
an adsorbate-substrate distance for oxygen atoms
on the (111) surface of aluminum. Valence-band
spectra obtained for the oxygen-exposed surfaces

are compared with a theoretical calculation. "
Discussion of the valence-band spectra for the
clean faces is presented elsewhere. '

The experiments reported were performed us-
ing the monochromatized radiation from the 4'
beam line at Stanford Synchrotron Radiation I ab-
oratory (SSRL) as the excitation source. Photons
at two energies were used to excite electrons:
50-eV photons to excite the valence-band region
and 130-eV photons to excite the 2P core of alu-
minum. Incoming light illuminated the sample
at 5'-10' away from grazing incidence. The
photoelectrons were energy analyzed in a double-
pass, cylindrical mirror analyzer having its op-
tical axis 5'-10' off the sample surface normal;
the joint energy resolution (photon plus electron)
was 0.4 and 0.15 eV for the 50- and 130-eVpho-
tons, respectively. The samples were electro-
lytically polished single crystals of aluminum.
The (111)crystal was extremely specular to the
eye and also showed a surface almost free from
defects when investigated with transmission elec-
tron microscopy. The crystals were cleaved in
situ by repeated argon-ion bombardment and an-
nealing cycles (0.5 h at 400'C). Cleaniness was
checked by AES (Auger electron spectroscopy). '
LEED (low-energy electron diffraction) analysis
showed good surface order after the final anneal-
ing.

Figure 1 shows the evolution of the spectrum
from the Al 2p core region as a function of oxy-
gen exposure. The appearance of two chemically
shifted, oxygen-derived peaks is clearly seen.
One is shifted 1.4 eV to higher binding energy
relative to the clean Al 2P peak. The 1.4-eV-
shifted peak is associated with the aluminum sub-
strate interacting with chemisorbed oxygen atoms.
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FIG. 3. Temperature dependence of the Al 2p region
spectra for 100 and 200'C. The superimposed inset
shows the abrupt onset with increasing temperature for
a constant heating rate.
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FIG. 4. Al valence-band region for different oxygen
exposures having change in line shape.

these data. A simplified analysis yields an acti-
vation energy of 1 eV.

The temperature behavior suggests that the oxy-
gen atoms gain the energy necessary to penetrate
the surface and interact with aluminum atoms to
form an oxide in the octahedral hole right below
its chemisorbed site. A surface penetration is
consistent with the fact that increasing the sub-
strate temperature increases the amplitudes of
the lattice vibrations, making the surface more
open and easier for the oxygen atoms to pass
through. Thus the measured temperature depen-
dence of the intensities in the oxygen-related Al
2P peak is due to an a,ctivated transformation
from the chemisorption to the oxide phase. This
change of state involves a transport of oxygen
atoms through the aluminum surface with the pen-
etration taking place at the threefold, centered
sites having no aluminum atom immediately be-
low in the second layer.

Further information is obtained by comparing
0 2P spectra for oxygen-covered Al(111), shown
in Fig. 4, with the calculated density of states
for the same system. " Figure 4 shows the
changes in the 0 2p line shape as a function of
exposure with the Al valence band removed. The
spectra normalized to a common peak height show
a steady increase in strength on the high binding
side. Above l50 L, the peak height does not in-
crease as a function of exposure, and all further
uptake is reflected in an increasing width. The
broadening is due to an increased oxygen-oxygen
interaction consistent with the calculation which
has the ~ orbitals higher in binding energy. By
contrast, the (100) and (110) faces show an ap-
proximately constant line shape with increasing
strength as a function of exposure.

In discussing the above data, an unknown pa-
rameter is the distance (D) above the surface of
the chemisorbed oxygen atom in the threefold,
centered site on the Al(111) surfa. ce. Aluminum-
oxygen bond lengths can be used to make an esti-
mate. 1.90 A is the ionic bond length for Al-0
and a good first choice as a minimum bond length
in chemisorption. It yields a D =0.9 A outside
the first layer. ' An upper limit on the chemi-
sorption Al-0 bond length is given by the "jelli-
um" calculation. For the threefold, centered
site in the (111) surface, the modified "jellium"
calculation' gives an Al-0 bond length of 2.10 A.

Calculation of the valence density of states is
very sensitive to the oxygen-substrate distance.
The 0 2P resonance moves deeper down in the
band as the oxygen-atom-substrate-surface dis-
tance decreases. The asymmetric 0 2p consists
of two peaks due to 0 2P orbitals perpendicular
(o') and parallel (m) to the surface with ca.lculated
binding energies of 5.5 and 7.0 eV, respectively. '
The experimental 0 2P resonance also has an
asymmetric shape (Fig. 4) and can be resolved
into two peaks 7.1 and 9.8 eV below EF. The ex-
perimental structures are deeper in the band and
their splitting is lary'er than the calculated values.
The position D =0.5 & gives a better fit between
experimental and calculated density of states,
but this corresponds to an Al-0 bond length short-
er than that observed in Al, O, and would be impos-
sible without surface reconstruction. The oxygen-
atom-surface distances, therefore, probably lie
between 0.9 and 0.5 A. This estimate is shorter
than the distance obtained for the theoretical cal-
culation of the total system minimum energy, '
which gives D =1.30 A. In that calculation, ' the
discrete character of the aluminum surface has
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been simulated by using a substrate lattice of
pseudopotentials, but no account has been taken
of electron-density dimples in the surface. A

calculation including electron-density variations
in the surface would place the centered equilibri-
um position further in, and give an 0 2p reso-
nance at higher binding energies, in agreement
with experiment. '
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