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Arguments are given that the spin-glass problem has lower critical dimensionalities
(below which no transition takes place) of 3 for vector spin-glasses and ) 2 for Ising spin-
glasses. Thus for vector spin-glasses, the physical case is also at lower critical dimen-
sionality, which is relevant to the peculiar behavior observed in classical spin-glass
alloys.

The treatment by Harris, Lubensky, and Chen'
of the Edwards-Anderson' replica theory suggests
that the upper critical dimensionality of the spin-
glass system (the dimensionality at which mean-
field theory fails) is 6, not 4 as it is in most con-
ventional phase transitions. Young' has, by real-
space renormalization methods, suggested a low-
er critical dimensionality (lcd, below which or-
der disappears) of around 2 for the Ising spin-
glass, and one of the present authors has adapted
the Harris-Lubensky-Chen treatment to suggest
an lcd of 3 for the vector-spin-glass case.4 In
our opinion, the experimental data' on Heisen-
berg glasses in three dimensions strongly sug-
gests that this system is at, or close to, lcd,
and may even have a line of critical points ending
at T =0 like the 2D (two-dimensional) X& model
and the ID x ' Ising model. (The evidence for
this is the so™called"clustering" phenomena,

clearly involving the weak dipolar anisotropy,
which should not strongly affect an ordered sys-
tem far from criticality and yet does so nonethe-
less over a wide range of temperature. A second
point is that a magnetic field destroys the critical
point as it does in a ferromagnet; yet at II =0
there is no evidence of a true two-phase region
~ather the line H =0, &(T, seems more like
a region of anomalous fluctuations. )

We try first to give strong plausibility argu-
ments based on a version of real-space scaling
that the lower critical dimensionality is 3 for the
vector spin-glass.

First, let us define the order parameter we
shall use for a vector spin-glass. While it is not
certain, especially at low dimensionality, that a
spin-glass has a unique ground-state configura-
tion, Walker and Walstedt' have noted that, ac-
cording to their computations, in local regions
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the spin arrangements remain reasonably rigid
in different low-energy configurations. Differ-
ent attempts at the ground state vary only in rela-
tive orientation of quite distant regions such as
one might expect with large long-range fluctua-
tions as at lcd. Let us then assume a lowest-en-
ergy overall configuration locally, 5, and de-
fine a tensor order parameter in the manner of
Binder and Schroder': For a given configuration
of average spins (5;&,

Now, let us attempt to use a real-space renor-
malization procedure which is similar both to the
techniques used by Thouless in the localization
problem" and to the Migdal potential moving tech-
nique. " We anticipate that, in a state in which
we have a slow fluctuation of f in space with

f =F(r), (V8)/8 (( I,
we may write the energy as a functional of &~ so
that

q; =('5;8 . Z = Jf (V8) d'r, (4)

We use ( & to signify the thermal average, a bar
to signify the average over sites i, and normal-
ize so that

The magnitude of the order parameter is then
given by

q' =»gv = I&&;&I' I
&~'I' = I&&, & I', (2)

where fj is the transpose of g and S are unit
vectors.

Aside from this magnitude, in general (5;& will
be rotated from 5,' by an arbitrary angle, &(r;),
which is assumed to vary slowly with distance.
A uniform rotation, &(r) =&„ independent of r,
will leave the energy unchanged, and we may
characterize the local state by the rotations &(r;)
if the system is not at a minimum-energy state.
Thus rigid rotations of an n-dimensional coordi-
nate system may be the group of the order param-
eter' or at least may be contained in it (if, for
instance, there is also a zero-point entropy).
For n =2, for instance, we have phase angle y
(a rotation in two dimensions) defined every-
where; for n = 3, a rotation vector ~ in some ar-
bitrary direction, defining a projective sphere in
3-space (from I ~ I = 0 to I Pl = m).

For discussing lcd behavior, it is only neces-
sary to study quite low temperatures where, in

general, y or ~ will vary relatively slowly in

space. We assume

Z=e ~
with

(3)

where J;, is a random variable with the typical
feature of "frustration~' which leads to spin-glass
behavior: The lowest-energy 5; are random and
in general many (of order 2) of the terms of (3)
are positive (unfavorable). The simplest case
for our purposes is the choice (J;;& =0.

and a priori we would assume that, since f must
be an even function of ~~, it will start out as

f(va) =al vol'+o(I ve I'). (5)

What we will try to show here is that the coeffi-
cient A in (5) renormalizes and acquires anomal-
ous dimensions in this case —or perhaps that (5)
is not correct at all.

Let us imagine dividing the spin-glass into
blocks of side L, large enough compared with a
that each has a definite internal spin structure
and thus a defined ~, but are otherwise arbitrary.
What we would like to know is the following: How
does the energy depend upon (~~ -~q)', where n
and P are neighboring blocks, as a function of I-?

In the simple ferromagnetic case, it is easy to
estimate this. If we assume that 0 varies linear-
ly with distance, the energy of any given bond
will be (&„-&8)'/I' L '. The total number of
distorted bonds is J, so that the energy goes as

Thus 2 is the lower critical dimensionality,
since for d&2 the coupling energy decreases in-
definitely with the scale. We may also do this by
a Migdal-type argument. The Migdal approxima-
tion may be characterized (see Kadanoff") as the
apparently very rough procedure of changing
scale by simply moving bonds parallel to them-
selves to coincide with neighboring ones. It may
be justified in the limits of very strong or very
weak interactions —in the latter, by a linearity
argument; in the former (which is the case rele-
vant for lcd considerations), by the argument that
since neighbors are nearly rigidly coupled, the
bond between spins 1, 2 in a square of bonds and
spins 1,2, 3, 4 might as well be between 3, 4 since
2, 3 and 1,4 are rigidly coupled. Having added
enough bonds in parallel, one can reduce the
problem to linear chains which have a character-
istic series addition property:

Tre~[ pZ„(5, 5,)- pZ-,5, 5,l
S2

=exp(- pJ„'5, 5,),
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d ln J,ff = d —2+const n —2

eff

and the constant is not quite accurately deter-
mined by the Migdal procedure. Estimates of
such logarithmic terms are necessary to deter-
mine whether or not there is a phase transition
at lcd.

The naive Migdal procedure gives quite a dif-
ferent answer for the spin-glass. Adding bonds
in parallel, we have to note that they are random
in sign; hence adding L" ' bonds leads to a sum
proportional to L " ' "so that

d"1 J 2
1I $ J ~ (s)

On the other hand, since we allow the spins to
assume their equilibrium value at each z, and
only study rotation of the equilibrium value,
these parallel bonds add in series exactly as they

where for the Ising case (strong-coupling limit)

J„'= sgn(J„J,,)max(J», J»)

unless I J» I = I J» I, while in the vector case
(strong-coupling limit)

1 1 1

13 12 23

since this is simply a case of adding elastic com-
pliances and the direction of the intermediate
spin can adjust itself at will.

In the Ising case, the Migdal scaling must be
handled with care and is very dependent, as we

see, on the scaling of the J distribution. Kirk-
patrick" has attempted this case for the spin-
glass by the Migdal method. In the vector case,
however, the results are very simple at least to
lowest order. For the ordinary ferromagnet, let
z be the coordinate direction running from n to
P. At a given value of z, all spins have the same
configuration so that we might as well add up all
the bonds, moving them to coincide. The sum is
proportional to the area L '. Then we take these
bonds and note that they must be added in series
to find the coupling energy since series bonds for
vector spins add as inverses:

1 1 L
y eff

eff

What this is saying is that this term in the free-
energy functional essentially renormalizes only
according to its naive dimensionality. As Josd
et 4."point out, at d = 2 one must go to higher
order in a series in J or 1/J; specifically

would if all ferromagnetic, according to. ' Thus
we arrive at the "naive" result

J „(I,) -I,&"-~»2- ~ J =L,~' »~2 J .

This clearly gives an lcd of 3.
The straightforward Migdal approximation is

much less clearly justified in this case, since it
leads to a genuine renormalization not simply
controlled by the dimensionality. We want to
give some rather plausible arguments that, as in
the ferromagnetic system, this result is valid
near, and especially at, lcd. The argument may
be put in a specific way. Imagine hypercubes of
side L, at first wholly uncoupled. Each hyper-
cube is presumed to be in or near its structure
of minimum energy and its state is thus assumed
to be defined by a rotation ~~ of this structure.
If we now weakly couple two of these hypercubes
by adding weak bonds at the surface (of area &" ')
between them, the energies of these bonds are
determined by the internal structure and can
lead to a coupling between them only of strength

This coupling is arbitrary in sign, but,
of course, for lowest energy the cubes will reor-
ient their relative ~'s to optimize it. So long as
the extra bonds satisfy J,„,f« 'Jb„~ a relative
twist of the two cubes will be slightly responded
to by a twist of the internal structure — but most-
ly at the surface; but if Jb„~»J,~» L 'Jb„@, the
response will be mostly in the bulk, although

J,„q is still too weak to reorient the structure as
a whole. (It is clear that the twisting energy and

coupling energy are always proportionaL) In
fact, we can see that in this range the relaxation
has reduced the twisting energy to 1/I of that if
the twist took place purely at the surface.

There seems to be no reason to expect radical
discontinuity in behavior as J,~ Jb„~. Adding
the surface bonds will in general change the
structure around them, which may effectively
weaken or strengthen them somewhat, but not
change the balance of favorable or unfavorable
ones. It is important not to confuse the total ex-
change energy with the order-parameter stiff-
ness. Naturally every bond makes some small
contribution to the total exchange energy, be-
cause it will perturb the structure around it by
a finite amount. Thus the total exchange energy
due to added surface bonds is L '. But we are
interested in comparing the relative energy if
we rotate one block's internal structure by ~

=180' relative to the others, and this difference
is the difference between the number of surface
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bonds which are favorable to one structure and
those which are unfavorable —which must be es-
sentially the variance of the exchange coupling,

This argument seems to us quite un-
avoidable.

With this simple argument we cannot come to
any conclusion as to whether a phase transition
occurs at d=3. It is rather likely that, as for
the normal ferromagnet at d =2, there is never
any true long-range order, but for the n = 2 XF
model, that does not preclude a phase transition,
which certainly occurs in that case." It is pos-
sible that the observed phase transition in the
spin-glass is real and intrinsic to Heisenberg
spins, or that it is caused by small anisotropies
which remove the n =3 character of the spins.

It is possible to produce an argument that the
lcd for the Ising spin-glass is 2 or greater. The
lcd for localization is 2, as is easily seen from
Ref. 10. In an earlier paper" one of us showed
that a phase transition in a spin-glass must im-
ply that an extended eigenvalue of the magnetic
response function y;, defined by

must diverge. X;, is a random matrix, and if it
has no extended eigenfunctions no transition can
occur. The very extensive simulations' of Binder
and Schr'oder make it lekely that a transition does
occur at d=2, but their results also suggest an ab-
sence of long-range order as might be expected;
so the best conjecture is clearly an lcd of 2 (Is-
ing). In conclusion, we note tha. t from the theo-
retical phase/transition point of view, it is fas-
cinating to have an experimentally accessible
~nd in fact much investigated — example of a
system at lcd. It seems likely that many of the
mysterious properties of the spin-glass systems
are a result of this fact.

A second very intriguing question is whether

this behavior is confined to the spin-glass, or
does it also extend to other amorphous systems,
and in particular to real glass or to random poly-
mer systems of various kinds. The very simple
argument leading to (d —3)/2 has no obvious limi-
tation to the spin-glass case.
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