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We have found a class of stationary translating and stationary rotating solutions to the

Euler equations in two dimensions a, Hamiltonian system. These "V states" are non-

linear dispersive waves that seem to play a role in our observation of long-time recur-
rence and breaking phenomena.

We have found a class of uniformly rotating and
uniformly translating solutions to the Euler equa-
tions in two dimensions that we call "V states. "
The set of uniformly rotating V states, V(m, T),
are single, finite-area vortex regions (FA~'s)
of constant vorticity density, having m -fold sym-
metry and period T. They are natural extensions
of the Kirchhoff vortex, 'an elliptical (m=2) FAVH
of constant vorticity density. The set of uniform-
ly translating V states, V„(I,U), are two op-
positely signed FAVR's of constant vorticity den-
sity having centers of area separated by I and
having speed U. They are generalizations of two
oppositely signed point vortices. The boundaries
of the rotating V states are nonlinear dispersive
craves and seem to play a role in our observa-
tions of long-time recurrence phenomena for per-
turbations to a circular FAVB.

The Euler equations in bvo dimensions are a
Hamiltonian system and can be written in the vor-
ticity-stream function variables as

s,g~ua, i;~vs, g=0, s„„q+s,„y=-g,
u =B,g, v =-8,$.

Lamb shows' that a small-amplitude perturba-
tion to a circular region of constant vorticity den-
sity f, of the form

r =R,[1+@cos(mo.'—&D„t)] (2)

has the linear dispersion relation (designated by
a tilde)

(u =-,'g, (m- 1).

The angular velocity of the mth mode in the lab-
oratory frame is

n =u„/m =-.'g, (m -1)/m. (4)

For example, m=2 waves rotate in the same di-
rection and with half the speed' of fluid particles
at the boundary. Higher-~ modes have a small-
er period of rotation

T =2m/a =4am/g, (m —1). (5

These points of the linear dispersion relation
are the open circles on Fig. 1.

As Lamb reports, ' the elliptical boundary has
a period T,(b/a) = (2m/&, )(b +a)'/ba, a function of
the ratio of the major to minor axes (b/a). This
band of periods is given in Fig. 1 as the vertical
line at m ' = 0.5 that emanates upward from (Tg,/
2n) =4.0. For (b/a)- ~ one expects these station-
ary near-sheet vortex states to be (Helmholtz) un-
stable to small perturbations.

The contour-dynamics (CD) algorithm' treats
interactions among regions of constant vorticity
density and thereby obtains a unit reduction in
dimension. Using the two-dimensional Green's
function, lnr, the Poisson equation is inverted

8S9



VOLUME 40, NUMBER 13 PHYSICAL RKVIKW LKTTKRS 27 MARCH 1/78

6J

O

0 LINEAR DISPERSION RELATION

4~m/(m-I)

T3 ~il
ii r

r~
-8

i~ b/a=2-
KIRCHHOFF
ELLIPTIC
VORTICES .0

The time evolution of points (x,y) on I' is then
determined by the differential equations (x'5„+ye„)
= u(x,y).

We began this investigation by seeking bands on
the (Tf,/2&) versus m ' diagram that emanate up-
ward from the open circles at integer m. To ac-
complish this, we substituted the discretized
equations of the CD algorithm' into the equation
for a uniformly rotating boundary, namely, 5
' Vp~ic].e = n ' Vboundary or

I/5
I

I/4
I

I/3 I/2
I

8$/ss= Qr-dr/ds,

evaluated at the boundary r =R (xr,yr) =R(n),
where x, n, s, and n are the polar coordinates,
are length, and unit normal vector to the boun-
ary. 0 = 2m/T, the angular velocity of the bound-

Bry, is a bifurcation parameter. If we substitute
8, $ =u sin8 -v cos8 in Eq. (7), and rearrange we
obtain

0.50.40.30.2
I /m

FIG. 1. Hotational periods for V states of the Euler
equations Tfp/2x vs I/m.

and the stream function is g=(-2&)ffd)dqlnr
x f($,q), where r =[(x-$)'+ (y —q)']' '. The veloc-
ity u =ue„+ve, of each point on a contour I is ob-
tained by differentiating g. Since f(p, rI) is a
piecewise-constant function, the area integral is
converted to a line integral over I', or

5(x,y) =g, Pr Inrge, d)+egg).

I" =- [u sin8 -v cos8 +OR(dR/da)]r = 0,

where tan8 =dy/dx is the local slope of the con-
(6) tours. If one assumes a single-valued contour

! r =R(n), Eq. (6) can be written as

u=gf dp R(p)(lnr)[e„(cosp- Q sinp) +e„(sinp+Q cosp)], (9)

where Q(a) =R 'dR/Dn, and r = [R'(n) +R (P ) —2R (n)R (P) cos(p —n)]' ', and Eq. (7) can be written as
the nonlinear integro-differential equatio~ for R(a)

4 wQdR/dn = t;Of d p R (p)(inr')[sin(p —n) [1 + Q(n) Q(P)] + cos(P —a)[Q(n) -Q(p)]). (10)

For V states translating uniformly with velocity
U, the equation corresponding to (8) is

G =[(u —U) sin8-v cos8]r=0.

Note that u and v now have contributions from
both contours of the translating pair of the form
Eq. (6).

For a given &(&) or U, the solutions of Eq. (8)
or Eq. (11), respectively, are the V states we
are seeking. The numerical results presented in
Fig. 2 have been obtained by a Newton-Raphson
i ternati ve computational procedure using a dis-
cretized representation of Eq. (8) or Eq. (11) with
u and v given by a discretized version of Eq. (6).'
Table I summarizes the parameters for the com-
putation and the leading properties of the V states,
including the magnitude Ip I and phase p =m(6p)
of the Fourier decomposition of R(n) from the

! center of area, , where
2r

p =(2r) 'f, e ™nR(n)da

= tan '(Imp„/Rep„). (12)

Note, that as one proceeds away from the open
circles in Fig. 1, the V-state maxima evolve to-
ward cusps. This is seen by the increasing ratio
of circumference to area or major radius to mi-
nor radius and, for example, by the negative ra-
dius of curvature in V(4, 17.5). The circulation
(f, times area) of the translating FAVR pair
V«(2.475, ~) in Fig. 2(e) is 5.974. For two point
vortices with this circulation, separated by 2.475,
the translational velocity is 0.384 [=5.974/(2v
x 2.475)].

We have validated the fact that V(4, 17.5) is a
stationary state by using it as the initial condition
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FIG. 2. Higher symmetry states. Rotating: (a) V (3,
20.0), (b) V(3, 20.5), (c) V(4, 17.0), (d) V(4, 17.5).
Translating: (e) V~, (2.475, 1/3).
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for the CD code. During one revolution the cir-
cumference exhibits a near-periodic motion,
initially decreasing from 8.685 to a minimum of
8.631 (at t =1.475), then increasing to a maximum
of 8.747 at t =12.675 and decreasing to its initial
value at t =17.375. The lack of exact stationarity
results primarily because the initial state is not
the exact stationary state, as we accept conver-
gence from the iteration procedure when E in
Eq. (8) is &0.001. Similarly we have also vali-
dated that the translating FAVR pair in Fig. 2(e)
is a stable stationary state by computing with the
CD algorithm for 0-t -30.

It is reasonable to conjecture that there ex-
ists a continuum of m-fold symmetric Y states
corresponding to points in bands emanating up-
ward from the linear dispersion relation (e.g. ,
open circles at integer m) on Fig. 1. Computation-
al and analytical work is in progress to charac-

FIG. 3. Recurrence and breaking of a perturbed cir-
cular vortex R(n, 0) = Rp(l+ e sech [(x-n)/An]$ where
An = p/6, e = 0.6. The profile of R(n, t) is shown at
times t = 0, 7, 13, 26, 33, and 39.

terize the bands.
The above-observed near-recurrence in circum-

ference prompted us to study strong-interaction
behavior of surface modes. We perturbed a cir-
cular FAVR and used

R(n) =Rp{l +& sech'[(& —n)/«g,
as an initial state, where bn =&/6 and a=0.6.
The results obtained with the CD algorithm at
six different times are shown in Fig. 3 with the
major and minor radii indicated. The first near
recurrence is at about t =13 and the second at
t = 26. Note that at t =33 we see the first signs of
"breaking" and filament development. If & is in-

TABLE I. Features of rotating V states, V(m, T), and translating V states, V«(L, U), shown in Fig. 2 (&0= 1.0).

MODES OF THE BOUNDARY

TYPE NODES AREA CIRCUM- MAJOR MINOR (64)m P
a b b,

N FERENGE RAD. RAD. leg. 0

V{3,20.0) 60 5.000 8.615 1~ 591 1.056 7.19 1~ 250 1.197 10 3.04 10 1.02 10 3.9 10 1.6 10

V(3,20. 5) 60

V(4%17.0) 60

5.000 8.948

5.000 8.224

1.684 1.032 7.19 1.245

1.403 1.155 19.690 1.259

1.366 10

6.02 10.
4.17 10

1.00 10
1.71 10
2.2 10

8.1 10 4.2 10

5.9 10

V(4, 17.5) 60 5.000 8.685 1.523 1.117 19.690 1.255 8.78 10 2.41 10 9, 3 10 4 3 10
m W W ~ ~ W M W W W W ~ ~ W M W W W W & ~ ~ W W & & W W ~ I W & W W W W W & W II ~ W & W W W ~ ~ & M W M W ~

V(2.475,1/3) 40 5.974 9.155 1.791 0.987
d

Area=+, y„(Ax)„; circumference =P, (&s)„=~5 &h„.
'gfith respect to the center of area.

'R(n) = pp+ 2Q ", I p& I cosm[n + (6y) ] (up to a rotation).
Of either upper or lower FAVB.
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creased breaking occurs sooner.
Via computations, we have demonstrated the

existence of V state —a new class of stationary
nonlinear dispersive wave solutions of the Euler
equations in two dimensions. The analytic solu-
tion to this bifurcation problem may be obtained
from the nonlinear integro-differential equation
(10) or by the methods of complex analysis. The
stability of V states to small perturbations of
arbitrary symmetry is an open question.
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N. J. Zabusky, M. H. Hughes, and K. V. Roberts,
"Contour Dynamics for the Euler Equations in Two
Dimensions" (to be published). The present improved
version of the code uses the following N-node dis-
cretized version of Eq. (6):

u(x, y ) =P~ fnu„(e„oose„+e~ sine„),

where Au„ is obtained by integrating Eq. (6) over a
straight line segment of slope tan9„which connects
nodes n and n + 1. The 2N differential equations

m e„+ym e&) = u(xm gym) (m = 1~ 2, ..., N)

are advanced in time using a second-order predictor-
corrector algorithm.
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By extending the laser-frequency-switching technique to a 100-psec time scale, we
have observed for the Na D& line the first-order free-induction decay, its inhomogeneous
dephasing time 72*, its interference with the nonlinear free-induction decay, and a 1.8-
0Hz interference beat of the ground-state hfs. Detailed theoretical predictions of these
new coherence effects are faithfully observed.

The method of laser frequency stoitching, ' util-
ized recently in generating coherent optical tran-
sients, has provided new ways for examining the
dynamic interactions occurring in molecules, '
solids, ' and atoms. ' In this work, the frequency
of a cw dye laser is abruptly switched by means
of voltage pulses applied to an intracavity electro-
optic phase modulator. A resonant sample in the
path of this light exhibits coherent transients
which are detected in the forward beam, allowing
dephasing and population decay times to be mea-
sured thus far in the range 1 p. sec to 5 nsec.

In the present study, laser frequency switching
is extended to a time scale of 100 psec. This fif-
tyfold increase in time resolution is achieved
without sacrificing the previous advantages of
heterodyne detection, high sensitivity, and the
ability to monitor the entire class of coherent op-
tical transients by preselecting the voltage pulse
sequence. Hence, quantitative studies of coherent
optical transients in this time domain are now
feasible.

New coherence effects may also arise at these
short times as illustrated here for the optical
free-induction decay4 of an inhomogeneously
broadened transition. This transient displays a
polarization containing both a first-order and a
nonlinear laser field dependence having different
decay times, heterodyne beat frequencies, and
laser tuning characteristics. The first-order
free-induction decay (FID), which was predicted, '
decays rapidly in the time of an inverse inhomo-
geneous linewidth T,* and is observed in the time
domain for the first time by laser frequency
switching. The mell-known nonlinear FID4 may
be long-lived with a decay time determined by the
power-broadened homogeneous linewidth. We
view these two forms of Ft:D as the transient ana-
logs of steady-state linear and nonlinear (hole-
burning) laser spectroscopy of an inhomogeneous-
ly broadened transition. Furthermore, the in-
creased time resolution permits the first obser-
vations of very-high-frequency interference beats,
for example, due to the 1.8-GHz hfs splitting of
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