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ical behavior can very likely be ascribed to the
use of too high frequencies {i.e., magnetic fields)
and of improper ferromagnets, where no true
exchange critical regime exists.
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her assistance with the measurements and
W. Scheithe for most valuable advice and discus-
sions during the course of the experiments. We
are also much indebted to Dr. S. Ikeda for making
his susceptibility data available for us prior to
publication and to R. S. Shilts for reading the
manuscript.
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In two recent moleuclar-dynamics experiments on two-component ionic fluids it was ob-
served that the plasma frequency was shifted with respect to its mean-field value. This
effect is explained here on the basis of a microscopic theory. The shift is shown to ex-
hibit a strong plasma parameter dependence.

Recently, the fastly growing literature on Cou-
lomb systems has been enriched with a new mo-
lecular-dynamics (MD) study of the time-depen-
dent fluctuations in a O'-He+' mixture. ' It was
observed there that the infinite-wavelength (h = 0)
plasma oscillations occur in this system at a. fre-
quency which is shifted both with respect to the
mean-field prediction and with respect to the pre-
diction from phenomenological hydrodynamics.
The observed oscillation frequency was found to
agree nevertheless with a sum-rule analysis pre-
dicting a plasma frequency independent of the

system's plasma par ameter.
In this Letter I analyze the above experiment

on the basis of a microscopic theory' which ha,s
previously been applied to the one-component
plasma. (OCP)' ' and was recently extended to
multicomponent Coulomb systems. ' I consider a
system of two mobile species (o =1,2) of mass

, charge e, and average number density m

immersed in an inert neutralizing background,
and characterized by the plasma parameters I
= (~m)'~'e, n '"P. When e,e, &0 such a system
will be called a binary ionic mixture (HIM) and
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it provides a simple model, for instance, for the
H'-He ' mixture. ' Vixen e,e2&0 and

e n

I will speak instead of a two-component plasma
(TCP). Here no neutralizing background is re-
quired. The TCP provides a simple model for a
genuine plasma or a molten salt. ' Formally all

these two-component ionic fluids can be treated
in the same manner. The physical behavior of
these systems is, however, very different. Let
us start our analysis by considering the disper-
sion equation for the collective modes of these
two-component ionic fluids. In the present the-
ory"' this dispersion equation reads as follows:
4(k, z)=detlzI —Q(k, z)l, where O(k, z) is the
transport matrix which is related to the memory
function Z(k, z) by

~l. s(k, z) =(~l (k, z)IP&+ &~I~(k,z)q[z - e~(k, z)Vl 'q~(k, z) IP&,

=0 (2)

This dispersion equation, which is exact, is iden-
tical to what one would get from more phenomeno-
logical considerations except that instead of hav-
ing a phenomenological relaxation frequency we
have here a microscopically defined, frequency-
dependent relaxation frequency v, (z). This quan-
tity is defined by

v, (z) =i P &„'(k=t),z),
g= 122

where 0„ is the element of the transport ma-
trix of Eq. (1) corresponding to a =P =(l,o), l de-
noting the longitudinal momentum state. All the
microscopic information necessary for describ-
ing the interspecies longitudinal momentum re-
laxation has been lumped together into the single
quantity v, (z). Contrary to what happens in a
phenomenological treatment v, (z) is, however,
not a positive parameter but in general a complex
function of s. From the symmetry properties of
the transport matrix one can show that at real
frequency &o, z =o) +i0, the real (vt)) and imagi-
nary (vi) parts of v, are, respectively, even and
odd functions of + .

v, (+ &u) = vt)(o))+iv, (u)) (4)

where, as usual, Q projects out the hydrodynam-
ic states lo&. In the present multispecies ease I
will use' multifluid hydrodynamic variables, e
=- (6,o), corresponding to the total number, mo-
mentum, and excess kinetic energy (j = 1-5) of
each species (o =1,2). For isotropic fluids h(k,
z) can be factorized' so as to separate the trans-
verse shear modes from the longitudinal modes
which, at k =0, can in turn be separated into heat
modes and density (n)—longitudinal momentum

(l) modes. At infinite wavelengths (k =0) the dis-
persion equation for the latter modes turns out
to be very simply given by

a„)(k=5,z) -=z'(z' -&~') + iv)(z)z (z' —0')

For stability reasons vt)(1o) has moreover to be
positive. Now, if the charge relaxation modes
were genuine hydrodynamical modes a knowledge
of v, (1o = 0)= v„(0) & 0 would suffice and the phe-
nomenological approach would be qualitatively
correct. The high-frequency plasma oscillations
require instead, even at k =0, a knowledge of
v) Q) at finite frequency in which case the imagi-
nary part of v, (z) will produce a shift in the plas-
ma oscillation frequency. This shift clearly de-
pends on the plasma parameter through Eq. (3).
Before analyzing the dispersion equation in more
detail let us define the two characteristic fre-
quencies which enter Eq. (2). The mean-field
plasma frequency O~ is defined as usual by

E &), o i
a=1, 2

co, ,'=4))p, '/p, =4))e,'n /n) „ (5)

by

0 =47)p /p -=0& —Ao . (6)

From Eq. (6) we see that 0 is always smaller
than O~, the subsidiary frequency 0, being de-
fined as

+o = 4))po /p~ i

po pm, 1pm, 2(pe, 1/pion, 1 pe, 2/pm, 2)

Let us now analyze the dispersion equation (2).
For the TCP we have p, =0 and hence from Eq.
(6), 0=0. The dispersion equation for the TCP

where p, =e n and p =m n denote, respec-
tively, the mean charge and mass density of the
o species. The second characteristic frequency,
0, entering Eq. (2) can be called the hydrodynam-
ic plasma frequency as it is defined in terms of
the total mean charge and mass density,

p, = Q p, andp = Q p
0= 122 ~= 122
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reads then

~ „,
"'(k =5z, ) -=z'[z' -Q,'+~v, (.)z] =0 . (8)

As discussed elsewhere, ' the two modes corre-
sponding to z'=0 generate, at small but finite k,
two sound waves. The character of the remain-
ing solutions of Eq. (8) changes profoundly with
the value of v, (z)/z. For strong coupling I expect
~ v, (z)/z~)) 1 and Eq. (8) leads then to an inter-
species momentum relaxation mode and an aP-
P~oximate hydrodynamical mode describing a

charge conduction and diffusion process in agree-
ment with an earlier finding. "' For weak coup-
ling, ~ v, (z)/z( «1, these solutions describe in-
stead weakly damped plasma oscillations at the
complex frequency z =+ pep —z $FTgp

Q„,= Q,[I+-,',(Q,)/Q, ]; r„,= v„(Q,),

where Eq. (4) has been used. Below I will show
that for weak coupling QTcp/Q~& 1. I et us, how-

ever, first consider the case of the BIM. I re-
write its dispersion equation (2) with the aid of
Eq. (6) as

From Eq. (10) we see that no sound modes will develop in the BIM. At nonvanishing k the z =0 solu-
tion of Eq. (10) generates a genuine hydrodynamic diffusion mode whereas z + iv, (z) =0 leads to non-

hydrodynamical relaxation modes. The remaining solutions of Eq. (10) describe plasma oscillations
occurring at the frequency Q~ in the weak-coupling limit (~ v, (z)/z~ «1) and at the lower frequency Q in
the strong-coupling limit (~ v, (z)/z~» 1). These limiting frequencies are in agreement with the predic-
tions from mean-field theory (Q~) and from phenomenological hydrodynamics (Q). The solutions of
Eq. (10) in the vicinity of these limiting frequencies read, for z =+Q~, M

—2il'~»,

1 v~(Q, ) Q,' Oo

for weak coupling, ) v, (Q~)/Q~) & I; and

1 v~(Q) Qo Qo
8(M 2 g & g 2 s BI M ~R

& g 2 (12)

for strong coupling, ~ v, (Q)/Q~ & 1. Notice that in all cases the sign of the frequency shift is determined
by the sign of v~. For the BIM, there is also the exceptional case 0,= 0 where the plasma oscillations
always occur at Q~ and are undamped (at k = 0) independently of the coupling. This can be understood

by observing that when 00= 0 the charge and mass density fluctuations are proportional to each other
just as in the case of the OCP. '

I now proceed with a calculation of v, (~) for weak coupling which indicates that the frequency shift is
positive, v, (Q~) &0 for I', &1 (0 = 1,2). This was also the case in the MD experiments" although these
were performed outside the weak-coupling region. For weak coupling we can use the disconnected ap-
proximation for the memory function Z in Eq. (1) and obtain from Eq. (3) to dominant order in I', (o

=1,2)

v, ((u)=~f "dkf"dte' ' g (P/p )[Sqp(k, t)Sp p (k, t) —
Spp (k, t)Sp p(k, t)],

g= 1~2

where

(13)

S„~ =P,.S~,~
while S~ ~,(k, t) are the equilibrium space-time correlation functions of the charge

densities of species o and a . As a first estimate I evaluate the right-hand side of Eq. (13) analytical-
ly in the Landau approximation. Cutting off the divergent k integral one obtains

v, "((u) = v,f™~(dklk)[1+ierf(u)/2kv)] exp(- (o'/4v'k'), (14
Aml Il
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where

V =2 V', V,'=m
a=1, 2

Notice that v, "(~= 0) = v, in(k, „/k~;, ) reduces to
the Spitzer value whereas at co =A~ as needed for
Eqs. (9) and (11), one can take k~„=0 in Eq. (14)
and obtain to dominant order in a =&a/2vk «1

v, (v) = vo(ln(e 2&a ~)+i[2z+O(a)]), (15)

where y is Euler's constant. In the particular
case of the H'-He" mixture with n, =n2 as con-
sidered in the MD experiment' one obtains from
Eqs. (11) and (15), Q~»/QUA= 1+0.08F'~' whereas
for the TCP considered in Ref. 7 one obtains
from Egs. (9) and (15) QTcp/Q, = 1+0.26I'~' with
in both cases I =2' 'I', . Hence, contrary to the
result of a sum-rule analysis, ' »M has been
shown here to be temperature dependent (I'-P).
A tentative plot of Q~»(F) based on Eqs. (11) and
(12), with for instance vI(Q) taken as positive al-
so in Eq. (12), and combining the present theo-
retical and experimental' findings is given in Fig.
1. In view of the fact that a measurement of O»M
could make possible a deduction of the system's
temperature, it would be of interest to produce
both theoretical and MD values of O»M over a
wide range of I values leading to a better knowl-
edge of QQ7M(F).

0
I

40
FIG. 1. Tentative plot of Q~&&

——~~~,M(I') based on the
theoretical findings. The MD value (Ref. 1) is indicated
by the dot.
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Nuclear acoustic-resonance absorption and dispersion of both isotopes Mo~ and Mo~

have been observed for the first time in molybdenum. From quantitative evaluation of the
nuclear-acoustic-resonance results in the conduction-electron contribution to the tensor
S connecting the electric field gradient to elastic strains have been determined at high
magnetic fields. Comparison of the electronic contributions to the diagonal and off-
diagonal elements of the electric-field gradient in Mo, Ta, and Nb show a disparity in
the dependence on the density of states.

Since in cubic metals the electric field gradient
(EFG) vanishes at a nuclear site, most of the in-
vestigations of EFG have dealt with noncubic met-
als and alloys. In the presence of an acoustic
wave, however, the cubic point symmetry is de-

stroyed and a sound-induced dynamic electric
field gradient (DEFG) is created. Hence, nuclear
acoustic resonance (NAR) enables one to extend
the EFG investigations to cubic metals and alloys.
Furthermore, NAB experiments allow some ad-
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