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Dissipation in Two-Dimensional Superfluids
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Dissipation of energy by a thin film of He on an oscillating planar substrate arises
both from motion of free vortices and from polarization of bound pairs. Starting from a
Langevin equation for vortex diffusion, and taking into account production of free vortices
from bound pairs, we estimate this dissipation in various regimes of frequency, ampli-
tude of vibration, and temperature.

Some years ago, Kosterlitz and Thouless' pro-
posed a physically appealing picture of superflu-
idity in two dimensions. They suggested that in
the superQuid state, smoothly varying phase Quc-
tuations coexist with a dilute gas of bound vortex
pairs with opposite vorticity. With increasing
temperatures, a finite fraction of the pairs dis-
sociates, destroying the superQuidity and caus-
ing a transition to a normal phase. Kosterlitz'
subsequently made quantitative calculations of
the static properties of a superfluid which sup-
port this picture. Becent work by Jose e~ al. '
suggests that the model used by Kosterlitz, as
well as the results obtained by him, provides a
universal long-wavelength description of two-
dimensional superQuidity. These theories pre-
dict' that the superfluid density drops discontin-
uously to zero by a universal amount as the tem-
perature is raised to the transition temperature,

Ce

Since both the superQuid density and the dissi-
pation contribute to the inertia and absorption of
energy of a 'He film on an oscillating substrate, '
precise experimental tests of the physical ideas
described above require theoretical predictions
for the dissipation as a function of frequency,
amplitude of oscillation, and temperature. In
this Letter, we determine the behavior of this
dissipation, which arises from the motion of vor-
tices across the superQow. Our analysis of the
vortex motion builds on the Kosterlitz- Thouless
picture of the static properties, and has been
aided by an analogy with the dynamics of a plas-
ma, confined between capacitor plates and sub-

jected to an oscillating electric field, in which
charges move by diffusion. Contributions from
free vortices and bound pairs enter in the various
regimes. A central result of our calculations is
that the dissipation is concentrated in a narrow
temperature interval about T„and tends to zero,
at all temperatures except T„ in the limit of van-
ishing frequency and substrate velocity.

Consider a helium film of uniform thickness,
on a substrate which has an infinite length L in
the x direction and a large but finite width W in
the y direction. The substrate is driven sinusoid-
ally at fretluency ~, with velocity v„(t) in the x
direction. To calculate the response of the sys-
tem, we start with the equations of motion for
the positions r;(t) of a collection of N vortices,
namely

dr& Dhp p

+ C(v„- v,') + v, ' +f,(t),

where D is a diffusion constant, n;=+ 1 is the
sign of the vortex, m is the helium mass, and S
is a unit vector perpendicular to the plane of the
film. The quantity v, ' is the local superfluid ve-
locity at r; (excluding the divergent self-field of
the vortex at r,); p, is the background superfluid
density, integrated across the film thickness,
which would be present in the absence of vortices;
and the number C entering the convective terms
[C(v„—v, ) + v, ] of Eq. (1) is a constant between
0 and 1. The q;(t) are fluctuating Gaussian noise
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sources whose components q; (t) satisfy

(q,.& ~(t) q,.'~'(t')) =2gg, ,b~b(t —t '). (2)

The local superfluid velocity may be written in
the form

v, (r) =u, + (b/m)z Q nP'G(r, r, ),

du, /dt = —8;(h/I L W )n;S && dr, /dt. (4)

Equation (1) is obtained by balancing drag forc-
es against the Magnus force and solving for the
resulting line velocity, dr;/dt. ' The diffusion
constant D, together with C and po, is deter-
mined by interactions with the substrate and with
excitations such as rotons and ripplons. Equa-
tion (4) is a microscopic restatement of the equa-
tion for the decay of two-dimensional superflows
due to vortex motion, as discussed by I.anger

where u, is a uniform flow in the x direction,
and G(r, r, ) is the two-dimensional Coulomb po-
tential at point r due to a charge (- 4w) ' at point

r;, together with image charges such that G(r, r, )
=0 for r at the film edges. These boundary con-
ditions ensure that there is no superf low across
the lateral edges of the film. Far from the edges,
G=(2v) ' Inlr-r, l. Because G vanishes for r
at the boundaries, the spatial average of vier) is
just equal to u„and the momentum density of
the film is g=p,u, +(p -p, )v„. The time depen-
dence of the average superfluid velocity u, (t) pro-
duced by the motion of vortices is given by

and Beppy. '
Kosterlitz' has shown that on large enough

length scales, the static properties of our sys-
tem can be related to those of a dilute gas of re-
normalized vortices. We will assume that criti-
cal fluctuations only enter through static quanti-
ties and calculate the dissipation by considering
only the effects of free vortices and isolated vor-
tex pairs. We also assume that the complicated
effects of vortex collisions and substrate interac-
tions can be incorporated into the parameter D
which we estimate to be &@/m = 10 ' cm'/sec
With these assumptions the convective pa. rt of (1)
may be ignored, because it carries an isolated
vortex in the direction of v„, and leaves unchanged
the separation vector of an isolated pair. These
processes give no contribution to du, /dt in (4).

It will prove useful to restate a number of re-
sults from Refs. 1 and 2 in terms of a "length-
dependent dielectric constant" &(r) that includes
the screening effect only of vortex pairs whose
separation is less than ~.' At large separations,
below T„&(r) tends to a constant &„, which is
the macroscopic zero-frequency dielectric con-
stant in the plasma analog. This quantity is equal
to po/p, (T), where p, (T) is the integrated super-
Quid density across the thickness of the film.
Above the critical temperature, &(x) tends to in-
finity at large r.

The leading corrections to & below &, allow
one to define a correlation length g (T) = a exp[1/
x(T)j, where a is an interatomic distance and
x(T) = —4+2mb p, (T)/m, 'k~T. For r»$ (T), one
finds that

(x) = e„" [1+2x(T)exp[- In(r/a)/In($ /a)]j. (5a)

Note that e„'—& '~r " in this region. Near T„x(T)=2b '(1-T/T, )' ', where b is a nonuniversal
constant. For a&r &$, below and at T„we have

& '(r) = &, '[I + 0.5/In(r/a) j,
where &, =p, /p, (T,) is the value of C„ for T- T, .

Above „TK otserlitz has defined a correlation or screening length, $+(T) = a exp[be(T/T, —1) "'], in
terms of which the density of free vortices becomes nz-$+ '. Note that $+-a($ /a)" for corresponding
reduced temperatures. For 1 & In(x/a) « I/x(2T, —T), one finds that &(x) obeys (5b), while more gen-
erally for In(~/a) &2m/x(2T, —T),

e '(~) = e, '{1y 2m cot[@ In(r/a)/In($+/a)] /In($ „/a)). (5c)

To study the dissipation at finite frequencies
and at low substrate velocities, we define a fre-
quency-dependent "dielectric constant" ~(u&), in
terms of the Fourier transforms of u, and v„, by
v„(~)/e(u~) = v„(~) —u, (&u). [In the plasma analog
5&& (v„-u, ) plays the role of electric field. j The

power dissipated per unit area in the film is the
time average of v„' dg/dt, namely

P = & p,(v„")'~Im[- e '(co}], (6)

where v„" is the amplitude of the substrate ve-
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e(u:) =1y
(d&/dr) x 2DrdJ' —i(d+2Dx 2

locity. The real part of & '(~) determines the ef-
fective superfluid density at frequency &. In gen-
eral, both bound and free vortices will contribute
to c((d).

With this in mind, we break the summation ov-
er vortices in (4) into two parts. At low frequen-
cies ((d «D(, ') above 7'„relaxation effects are
dominated by free vortices at 3. density n&

The value of dr;/dt for the free vortices is cal-
culated from (1) with v, ' replaced by the average
quantity u, . We replace the bound-vortex contri-
bution to (4) by a polarization term (e, —1)d(v„
-u, )/dt, where &„ the dielectric constant due to
the bound pairs, is approximately equal in this
regime to &, =-p, /p, (T,) introduced above. In this
way, we find du, /dt = —y(u, —v„) + (1 —e, ')dv„/dt
with the relaxation rate y = n'p ~»/m'e, k B T. If
we introduce an effective charge e = (mh'p, /m')"',
then e(~) takes the familiar form

e (u&) = e, + 47(i e'Dn»/k, T( '.

The power dissipated at low frequencies becomes
&=-'p. (T.)(v. )'~'/y.

For any fixed finite &, (7) must break down as
~c from above. Just above T„ for Da» co

»D$+ ', and for all ~ «Da ' below T„ the prin-
cipal dissipative contribution to &(~) arises from
the polarization of bound pairs. We assume that
the orientation of a vortex pair with separation x
relaxes to equilibrium at a characteristic rate
v(r), which we estimate as =2Dr '. Assuming a
simple exponential relaxation, the genera1ization
of the analysis of Ref. 1 to finite frequencies is

where (d&/dr)dr is the contribution to the static
dielectric constant from pairs of separation x,
and is proportional to x' times the number of
pairs at separation r. We obtain de(r)/dr by dif-
ferentiating the results for & ' collected in Eq.
(5) above. Since r(de/dr) is a slowly varying
function of T and xnear T„' 'we can estimate
the integral in (8) to be

Re& ((u) = e((2D/( ') '/') (9a)

Im&(&) = 4&[r(d&/dr)]„-(2&/ )1/2 . (9b)

Within the domains of validity of Eqs. (5a)-(5c),
one observed that (9a) exceeds (9b), so that we
may write the power dissipated as

P = 87»p, (v„")'(d~r(de '/dr) ~„(,D»~) v2, (1O)

with e ' given by the appropriate formula of (5a)-
(5c). At low frequencies below &, when ( «(2D/
(d)' ', one finds &~ ~(7', —T)(&d/2Da ')"( ~/'; near
T, and for (2D/u)"'«$ or «($+/a)'»', one ob-
tains I'D- &v/1n'(&u/Da '). Note that (9) is in ap-
proximate agreement with (7) at the borderline
frequency (v = D$+ ', for T & T,.

Thus far we have calculated only the linear re-
sponse to the substrate velocity. Our approxima-
tions are invalidated for sufficiently large v„by
an unbinding of the pairs. Standard results ob-
tained in studies of the decay of persistent super-
currents imply that there is a critical radius ~,
=A/m v„beyond which pairs will rapidly sepa-
rate."" For fixed w and T the creation of ad-
ditional free vortices enhances Im&, which in-
creases the dissipation below &,.

The creation of free vortices from pairs that
diffuse apart can be determined from the Lange-
vin equation for the separation vector r of a pair,

dr -2D poh' r k
dt =k,T 2.'M .;(,)-P —"("-") q(t)

where (q "(t)»l (t))= 4D&~& (t —t'). Equation (11)
follows from (1) if we absorb the effects of all
other vortices into e(r) and u, . The calculation is
carried out using methods described previously. "
Below T„when $ «r, «(D/~)~', the rate of gen-
eration of free vortices per unit area goes as A

Da 4[x(T)]2Imak '(v„-u, )l'+"( ~. In a wide film
where the steady-state density of vortices is lim-
ited by the recombination of vortices passing
within ~, of each other, "one finds that n& is pro-
portional to (R/D)' '. The analysis that leads to
(7) can be repeated, with

y(t) Da 2x(T) ~mak '[v„(t) -u, (t)]~2+"(r~» (12)

In the present case, however, if the frequency (d

is not too low, we will have y «& and a dissipa-
tion rate P= p, (&,)(v„'(t)y(t)), where the average
is taken over a cycle.

In a sufficiently narrow sample below &, (but
still assuming r, «W), vortex annihilation may
occur predominantly at the walls rather than
through pair recombination. Under such condi-
tions, however, generation of free vortices at
the edges will also dominate pair dissociation in
the "bulk, " and the resulting density of free vor-
tices turns out to be the same as the TV-~
case.
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For temperatures sufficiently close to T, and

v„ fixed, when $ (&)»r, Eq. (12) must be modi-
fied. The quantity x(&) must now be replaced by
1/ln[tr/ma(v„- u, )].

The authors are indebted to D. Bishop and
J. Beppy for discussions of their experimental re-
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Phonons incident on an Al-PbBi tunnel junction were found to be detectable only if their
frequency exceeds a voltage-tunable threshold. Modulating this threshold yielded a pho-
non spectrometer with a resolution of 10 GHz at a phonon power of 10 6 W and a frequen-
cy range from 100 GHz up to several hundred GHz.

A complete description of any solid-state sys-
tem which interacts with high-frequency phonons
(& 100 GHE) requires knowledge not only about the
frequency of the incident phonons but also of the
emitted ones. While it is no longer difficult to
generate monochromatic phonons with frequen-
cies tunable up to the terahertz range, ' ' the
analysis of phonon frequencies in this range is
still a major obstacle because a phonon spectrom-
eter is lacking.

Several solutions have already been proposed.
Some impurities in crystals exhibit frequency-
selective phonon absorption which "burns a hole"
in the phonon spectrum. Tuning the absorption
frequency with an external magnetic field" or
with stress' yields information about the phonon

frequency distribution. Selective phonon detec-
tion was achieved by probing the excited states of
selectively absorbing impurities by optical tech-
niques. ' ' Sidebands of optical luminescence
lines can also be used to investigate the frequency
distr ibution of nonequilibrium phonons. '0

Although these experiments yielded important
results, none of the suggested spectrometers
found widespread application, mainly because
all of them use special bulk materials which can-
not readily be applied to the study of all phonon
sources of interest. Furthermore, none of them
satisfactorily combines resolution, detection
speed, and sensitivity.

In this Letter, I report on investigations of tun-
nel junctions consisting of two superconductors
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