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result of screening by the gas of bound vortex
pairs in a way similar to the 2-D Coulomb gas.
It is this screening which reduces the free-ener-
gy barrier for nucleation of vortex pairs of criti-
cal size and hence increases the dissipation of
two-dimensional superQow. We also show that
the average number of vortex pairs whose size
is below the critical distance in the metastable
state is an increasing function of superfluid veloc-
ity, so that the superfluid density is reduced by
a velocity-dependent amount as the critical tem-
perature is approached from below.

We consider a 2-D superfluid' in a metastable
state characterized by a superfluid velocity V,.
In the spirit of the Vinen theory' as elaborated
by Iordanskii' and Langer and Fisher' we assume
that the excitation of a vortex pair with mean
separation y&y, perpendicular to the direction of
superf low will reduce V, by an amount h/mA,
withe the dimensions of the film. The mecha-
nism behind this decay process is analogous to
the droplet model of homogeneous nucleation,
i.e. , fluctuation vortex pairs with distances y &y,
tend to coalesce whereas those pairs generated
at distances beyond y, will tend to expand indefi-
nitely and crash against the boundaries, thereby
providing a channel for flow dissipation. The
critical distance y, is determined by considering

We show that in a nonequilibrium, two-dimensional superfluid near the
the energy for dissipative fluctuations is greatly reduced as a result of s
gas of bound vortex pairs, leading to an enhanced decay of the superfluid
also show that the superfluid density is reduced by a velocity-dependent
approached from below.

He films of few monolayers in thickness are of
considerable interest in view of current progress
in the understanding of critical phenomena in the
two-dimensional X-Y model. " Experiments by
Telschow and Hallock' and Bishop and Reppy' on
the low-temperature properties of few-monolayer
He films on a Mylar substrate suggest that dis-
sipation of the two-dimensional (2-D) superf low
in the onset transition region is much larger than
the dissipation of dilute three-dimensional-type
superfluid in Vycor substrates.

The purpose of this Letter is to point out that
this qualitative difference between the dissipation
for two-dimensional versus three-dimensional
systems can be understood in terms of the fact
that the critical fluctuations in a 2-D superQuid
may be represented by the thermodynamics of a
gas of vortex pairs interacting through long-range
logarithmic potentials.

The decay of the nonequilibrium current-carry-
ing state of a superQuid in three dimensions pro-
ceeds via the nucleation of vortex rings of a cer-
tain critical size. ' In two dimensions the analo-
gous mechanism is that of nucleation of vortex
pairs with a critical separation normal to the su-
perf low. We show that for a two-dimensional su-
perfluid near the critical point the energy for
creation of vortex pairs is greatly reduced as a
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the energy of a vortex pair in the laboratory
frame, which is given by'

E = (p,/2v)K' in(y/a) —p, KV,y

with K the vorticity, a the vortex core radius, p,
the superfluid density in units of mass/area, and

y the distance, along an axis perpendicular to the
superfluid velocity, bebveen the vortices making
up the pair. Since the maximum of (1) deter-
mines the saddle point of the fluctuation barrier,
it can be used to determine the critical distance
yo, z.e. ,

yo =K/2mV, . (2)

with v, a prefactor that depends on the substrate
and with no critical-point singularities, k& the
Boltzmann constant, and 0 «1. Far below the
critical temperature this picture correctly de-
scribes the decay of the metastable states. As
T, is approached from below, however, a 2-D
superfluid in equilibrium is threaded with vortex
pairs whose average distance increases with tem-
perature and diverges at T,.' It is therefore ob-
vious that in the metastable state, the energy re-
quired to produce a vortex-pair fluctuation within
a distance y, will be strongly renormalized by
the presence of an equilibrium distribution of vor-
ticity, since the latter acts so as to screen the
long-range velocity fields of the fluctuations.

We can calculate the renormalized activation en-
ergy by exploiting the isomorphism of the vortex
model of liquid helium to the 2-D Coulomb gas,
a system that displays an insulating-to-metallic
transition as the temperature is increased. "'2

The creation of a vortex pair in the 2-D super-
Quid is analogous to the introduction of an extra
pair of opposite charges in the 2-D Coulomb gas;
and since as the system gets closer to the insu-
lating-metallic transition temperature its polar-
izability increases, the energy required to add
them is reduced by electrostatic screening.

The energy E required to inject a pair of oppo-
site charges in a Coulomb gas is given by

E =(- 2e' inr)/e (4)

with ~ the q = 0 dielectric constant of the 2-D Cou-
lomb gas. The dielectric constant in the insulat-

In the absence of any pair interactions E(y,) de-
termines the energy required to nucleate a vortex
pair of critical radius. The rate at which vortex
pairs fly apart is then given by

R = v,V,'J, '~, &d'x exp[-E(x)/kBT]

T, = mh'p, /2k~ m'.

At low velocities we assume that the vortex dis-
tribution is not changed appreciably, and remem-
bering that the mapping into the 2-D superfluid
can be carried out formally by replacing e' by
2m5'p/m', with m the mass of a helium atom, we
obtain after an elementary integration

Z=v V".0 s

The rate at which the superfluid velocity decays,
which is given by'~

dV, /dt = —V,(v, R P'2

then becomes

dV, /dt= —v,V,V, . (10)

In all these equations the superfluid velocity is
in units of an inverse vortex core size, i.e. , V,
= (cm/sec) && m/k = (cm/sec) x10 ~. This means
that since" C= 1, dissipation will become signifi-
cant within a percent of the critical point. This
result follows from the —,'-power law of Eq. (6).
This behavior is in qualitative agreement with
the experiments of Ref. 4.

These ideas can also be applied to the super-
fluid density of a moving 2-D superfluid in the
following manner. Those vortex pairs separated
by distances smaller than the instability thresh-
old p p are assumed to be in quasiequilibrium
with a distribution determined by their energy in
the rest frame of the substrate. Since ih the
presence of a flow velocity V, the distribution of
the metastable bound pairs is not symmetric, the
total current will be diminished by a backflow
which is dominated by the contribution from the
number of pairs near the instability threshold.
Since this contribution to the backflow is given
by V,V,' 2 we can obtain p, by dividing the me-
tastable current by V,. We therefore obtain

p.(V. ) =p.(V.= o) -&V.'" '

with B a numerical constant. As can be seen, no

ing, low-temperature regime is given by"

e(T)=e'(kBTP) '

with P a temperature-dependent quantity which
near T, behaves as

P = 2+C(1 —T/T, )"', (6)

while 7.', is related to the superfluid density
through
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matter how small the superfluid velocity is, close
to T, finite-velocity effects on p, will be detecta-
ble.

One of us (R.J.M.)"has extended the virtually
rigorous renormalization-group technique of Kos-
terlitz" to this quasiequilibrium picture. Al-
though the details will be published elsewhere,
the conclusions can be stated in a simple manner.
The calculations show that the superfluid density
is now given by

p, (V,) =(m'k T)/mm')[P —DV,"' "] (12)

with D a substrate-dependent constant of order

Several points deserve comment concerning
Eqs. (10) and (12). (i) Near T, there is a marked
enhancement in the dissipation rate and a pro-
nounced drop in p, which should be observable in
the temperature range T = 0.01T,. (ii) The tem-
perature range over which finite-velocity effects
occur should broaden with increasing V„afact
which is consistent with the observations of Bish-
op and Beppy. (iii) For T &T, the temperature
dependence of the velocity exponent is the same
as the one that determines the temperature de-
pendence of p, (V, =O) near T,. (iv) For V, =O the
temperature dependence of p, agrees with the sta-
tionary film results of Nelson and Kosterlitz" so
that Eq. (12) provides a quantitative formula for
extrapolating to zero-velocity persistent- current
measurements.

As we have shown, in a nonequilibrium 2-D su-
perfluid the proximity to the critical point de-
creases significantly the energy barrier for dis-
sipative fluctuations, thereby increasing the rate
at which the superfluid current decays. More-
over, the superfluid density as determined by per-
sistent-current measurements becomes velocity
dependent near T„masking in part the universal
behavior of the critical value of p, (V, =O)/T.

We are grateful to Dr. J. Reppy for communi-
cating his results before publication. We have
profitted from conversations with Dr. F. Dyson
and Dr. D. Nelson. A useful remark by Dr. B. I.
Halperin helped us correct an error in Eq. (3).
This research was supported in part by the U; S.
Army Research Office, Durham, N. C.

Note added. —Ambegaokar, Halperin, Nelson,
and Siggia" have independently derived these re-
sults and extended them to high frequencies. In
their work, the characteristic distance traveled
per cycle by a diffusing vortex plays the role of

1/V, in this Letter.
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