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Theory of a Free-Electron Laser
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(Received 18 August 1977)

A classical, linear theory is given for the gain of a short-wavelength free-electron la-
ser. Waves propagating along the relativistic beam are unamplified when the beam is
cold. Two of the six geometric optics modes have phase velocities & c. When thermal
effects are included, the theory predicts the possibility of substantial amplification of
these two modes for asymmetric electron distribution functions, due to wave-particle
resonance.

Two recent experiments on the Stanford Linear
Accelerator Center's superconductive linear ac-
celerator have rekindled wide interest in the pos-
sibility of free-electron lasers. "A classical
single-particle radiation analysis for this system
was published in 1951 by Motz, ' who later carried
out experiments' with 100-MeV electrons. Phil-
lips' posed the problem as an 0-type traveling-
wave interaction, and successfully built and oper-
ated microwave devices (Ubitrons) of high effi-
ciency ( 1070) and high power output ( 800 kW).
Quantum-mechanical calculations, posing the in-
teraction as stimulated Compton scattering —a
nonlinear process have been published by Ma-
dey, ' Sukhatme and Wolf, ' and by Colson. ' Hopf
e~ a~. ' have reproduced Madey's result using a
classical theory based on the relativistic colli-
sionless Boltzmann equation, and have also pub-
lished a strong-signal theory. " General features
of stimulated processes leading to gain have been
summarized by Granatstein and Sprangle. " Kwan,
Dawson, and Lin" have carried out a linear sta-
bility analysis for a cold beam employing peri-

odic boundary conditions and compared the pre-
dicted temporal growth rates with numerical sim-
ulations.

The linearized theory presented here invokes
a mechanism not included in the above, namely
wave-particle resonance, but neglects the free-
streaming effects which underlie prior work. It
indicates that within the geometric-optics approx-
imation, a cold relativistic beam propagating
along the axis of a helical static magnetic field
does not amplify short-wavelength radiation prop-
agating along the beam. Moreover, it suggests
that sizable gain can be obtained using a beam
with a finite momentum spread, but that this
spread must be asymmetric. When the gain mech-
anism described here is operative it is likely that
the above nonlinear theories must be modified so
as to incorporate it.

We take the periodic transverse static magnetic
field to be the curl of a vector potential

A(z) = (mc'/e)V(z),

where V(z) =e„V„(z)+e, V, (z) is the dimension-
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less wiggle momentum with V„(z) and V, (z}peri-
odic functions of z. This vector potential is valid
near the axis of a system of oblate helically wound

wires carrying zero net current. The choice V„
= V cosk,z and V = V sink, z corresponds to the ex-
periments"; the case V, =O can be realized, for
example, by an array of permanent magnets. As
will be seen, the results do not depend critically
upon the relative size of V„and V, .

The relativistic Lagrangian for an electron in

[ 1 (P ~ y2 + g~2)/c2] 1/2 (2)

Thus f=f,(n, P, y) is the corresponding general
steady-state distribution function, without limit
on the wiggle momentum.

The linearized kinetic equation for f„ ths small
perturbation in the distribution function, is

the field given by (1), neglecting self-electrostat-
ic effects, yields three constants of the motion:

n = y~/c —V„; P= yPc —V„.

Bf, /B t+ (cu/y) ~ Vf, —(e /mc)(E, + u x B,/y} V„fo —(e/my)u && [ V && (mVc'/e) ] ~ V„f, = 0,

where u is the electron momentum divided by mc, and E, and B, are the perturbed electromagnetic
fields. In terms of the independent variables r, t, n, p, and u=(y —1)'", (3) becomes

Bf, /B t + (cu/y) Vf, = (e /mc)(E, + u x B,/y) [(u/u) Bf,/Bu+ e, Bf,/B p+ e„Bf,/B n ].
Since we are interested in interactions with electromagnetic wavelengths much shorter than the perio-

dicity length in V(z), and propagation along the beam, we seek a steady-state geometric-optics" solu-
tion with E, =a exp[i(% —cut)] and B, = (ck && a/(1)) exp [i(C - u&t)], where k =k(z)e, and 4 = jdr k(z) In a.d-
dition one has f, =g(z) exp[i(4- cut)], and current density J, = l(z) exp[i(ll - &ot)], with T(z) = - ecf d u ug/
y. The quantities a(z), k(z), g(z), and j(z) are all slowly varying in a wavelength 2n/k.

We solve for the conductivity tensor o for the electron gas, where ]=T a, and find

dn dPdu fo(n, P, u)
Bu u Ac —(dy u

'uue„~ "uue„

First we consider a cold beam; e.g. , f (n, p, u)=E,5(n)5(p)6(u-v). Then (5) becomes (~ 2=4g@ e2/m)

o = ~
3 [ 'u(I ee)+ V-V]

47TCO

v V(V+e, v)+(V+e, v)V v(1+V') (V+e, v, )(V+e,v, )I+
v, kc/(d -y/v, yv, ' (kc/(u —y/v, )' (6)

where now v, ' =v'- V' and y= (1+v')'~'. The dielectric tensor e = (I -&2c2/(1)2)f+ c2kk/~2+ 4gtg/~ may
now be formed. The normal modes of the system obey ~ a=0. It is convenient to use the right-handed
orthonormal basis vectors e, = e, && V/V, e, = V/V, and e, = e, . Then

le + 42e + 23( 2e3+ 3 2}+ ~33 3 3

where

e„=1 —(t3c/(u}' —(a&p
'/~')(v /yv2),

&„=1 —(bc/(u)2 —(a)~2/a)2)(v/yv, ') [v'+ 2 yV'/v, A. + V'(1+ V')/12v, 2],

e„=—((u~'/(u2)(v/yv, 3) [yV/X+ (1 + V') V/A'v, ],

e33 = 1 —((l)~'/~2)(v/yu, 3)(1+ V')/A. ',

with A =Ac/() -y/v . From det& =0 we see that the roots of the six geometric optics modes are given by

&» = 0 or k c/~ = +
~
1 —(~~'/~') (v/y v,) ~

v '

(waves with &u/k&c), and by D—=e22e33 —&»2=0, or, after some algebra,

0 = [1 —(~~'/&u2)(v/yv. ) —(t3'c'/~')]f(&c/~ -y/v. )' - (~p2/~2)v/yv, 3].
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One pair of roots is identica, l to (9). The other pair is

k c/~ =~/~. ~ (~p/~)(~/r~. ')"'
which are slow waves (v/k &c). The forms of (9) and (ll) are reminiscent of corresponding forms for
conventional transverse electromagnetic and longitudinal space-charge waves on a cold plasma stream,
but it must be noted that here the modes are neither purely transverse $'a =0) nor purely longitudinal
(k&&a =0). In any case, it is apparent that (9) and (11) lead to purely real roots: The cold beam mani-
festly does not amplify.

We now consider the effect of a small thermal spread in the beam momentum. The most important
change will be the addition of a, small real component to (6), on account of wave-particle coupling. The
two modes given by (11) are thus the only candidates for growth. The possibility of amplification is
governed by the steady-state transport equation for the wave energy U,"

where U =(~/8m)(s&/8&v):aa, and o is the Hermitian part of c;
After some manipulation, one can show that when v'» V'=1,

(13)

where the upper sign (negative energy) goes with the analog of the slow spa, ce-charge wave given by
the upper sign in (ll), and where the lower sign (positive energy) goes with the analog of the fast space-
charge wave given by the lower sign in (11). The group velocity can be shown to be S &u/Sk = cv, /y = c,
namely the z velocity of the beam. The lowest-order thermal contribution to o' is, from (5),

&e0'

It can be shown that uu:aa*=a'/V'. Thus if we define N,F(u) = J dndPf, (n, P, u), we have from (12)

c ~ 1+V a' e~' a'v
sr 4m su~ V' v"' 4~ (1+ V') V' (15)

where w, =@+(&u~/&u)v~'(1y V') ' and the upper and lower signs correspond to those in (11). For the
case V = V(e„coskp+e, sinks), Eq. (15) yields

Q' CU v
(lna') = v w —~ — ——;F'(m, ) =- G,

as c u) (1+ V')'

and growth occurs if E'(~, ) &0 for the slow spa. ce-
charge wave, and if F'( ) &0 for the fast space-
charge wave.

The consequences of (16) can be readily under-
stood with the aid of Fig. 1. Clearly the sym-
metric distribution l(a) leads to spatial decay
since F'(~, ) &0 and F'(~ ) &0. But the asym-
metric distribution 1(b), which is qualitatively
like that of many relativistic beams, can yield
spatial amplification for the positive-energy wave
for v &ce &u, If we ap. proximate E'(w, )=1/&',
where & is an effective width, then with = 10",
co~ = 3 && 10', v=y = 50, V' = 0.5, and & = 10 ', (16)
yields G=10 ' cm '=1%/m. ' A distribution func-
tion skewed in the opposite sense would amplify

! the negative-energy wave.
In conclusion, the gain of a free-electron laser

described by the theory presented here depends
critically on the axial momentum distribution of
the beam. Asymmetry is required for gain, a
low-energy tail leading to amplification of the
positive-energy wave. Suitable tailoring of the
distribution function could result in gains higher
than those that have been observed. Clearly the
results are very sensitive to the shape of E(u)
suggesting that appropriate experiments would be
most valuable in establishing the predictions of
this work.

%e have benefitted from discussions with
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FIG. l. Axial momentum distributions. In (a) a sym-
metric distribution is shown which is stable against
spatial amplification for both the fast and slow space-
charge waves, since E'(gg, ) &0 and E'(zg ) &0. In (b) an

. asymmetric distribution similar to that furnished by a
linac is shown which can support amplification for the
fast wave, when zg is in the shaded region where I."(~ )

& 0.
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A hollow, rotating 2.3-MeV electron beam, moving with axial velocity of - 0.25c after
injection through a magnetic-field cusp, is slowed down and trapped in a small magnetic

mirror well by interaction with a 30-60-0/square resistive wall. The trapped-electron

ring containing - 10' particles performs a damped oscillation about the well minimum

and settles down into an equilibrium state.

The electron-ring accelerator (ERA) concept,
first proposed by Veksler et al. ,

' uses the elec-
trostatic potential well of a high-density, rela-
tivistic electron ring for collective acceleration
of positive ions. Experiments in progress at sev-
eral laboratories' 4 employ a pulsed magnetic
mirror field with azimuthal beam injection to ob-
tain a compressed electron ring. In the ERA
experiment at the University of Maryland, ' ' on
the other hand, the ring is being formed with the
aid of a static, cusped magnetic field. The cusp

transforms a long hollow electron beam into a
short rotating cylindrical electron layer (E layer)
which propagates in the axial direction at a frac-
tion of the speed of light. The length and velocity
of the E layer depend on the pulse shape of the
injected electron beam and the axial magnetic
field, B. As B is increased, the axial velocity
is reduced until a cutoff value, B„ is reached
where all particles are reflected in the cusp re-
gion. Experimentally, it is found that repro-
ducible beams are obtained only when B is some-


