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Quantized Electric Flux Tubes in Quantum Chromodynamics

Itzhak Bars
DePa&ment of Physics, Yale University, New Haven, Connecticut 06520

(Received 20 December 1977)

It is shown that in the strong-couplirg limit the spectrum of quantum chromodynamics
consists of closed and open strings with quarks at the ends. A Hamiltonian formulation
in the axial gauge A3' = 0 is used. The theory is reformulated in terms of new canonical
variables. Algebraic methods are employed to arrive at these results.

I analyze the familiar SU(A') quantum chromo-
dynamics (QCD) in four dimensions. A gauge-in-
variant Hamiltonian density follows from the
symmetric energy-momentum tensor 6„„,X= 6I«

up to constraints. The definition of the theory is
completed by imposing the gauge-invariant bound-
ary conditions F&„'-0, 4 „'-0 at space infinity
~x~-~. In the quantum theory this condition de-
fines the physical states, and in particular the
vacuum, as we will see below.

I specialize to the axial gauge A3'=0. The ca-
nonical formulation, with particular attention to
boundary terms, has been reanalyzed recently in
two dimensions' and four dimensions. ' In the ax-
ial gauge the canonical variables are (A,. ', E, ')
(i = l, 2) and (g, (~) while A, ' and E, '= —B,A, ' are

dependent operators. From the constraint equa-
tion D "Fp

p &Jp we solve for E3'.-

g 'E, ' (x, &, t) =f, de ' G, ' (x, z ', t),

where G, '=g 'D,E, '+g 'D, E, '+ gt-,'g'g.
E, '(x~, z = —~) is an operator with nontrivial

commutation rules with the canonical variables.
Therefore, imposing the boundary condition
E,'(x~, —~) =0 implies a constraint. Rather than
solving this constraint' I choose to work in a larg-
er Hilbert space and separate the physical sector
by the condition"' f „dz G, ' ~phys) =0.

To analyze the strong-coupling limit I perform
JIB

the canonical transformation' Q,. '=@A, ', E,. '
=g 'E,. '. The Hamiltonian density takes the form

&= 2g'E'+ 2g '[(8+,)'+ F„']+lI t( —,
' jn ~ v+ pm+ u, A,' ,X)g. -

Therefore, in the limit g-~ the first term dominates X, = ,g (E,'+E,'+—E,'). The canonical rules lead
to the algebra

[G,'(x), G, '(x')]= if ' 'G, '(x)5 '(x —x'),

[E,o(x) E (x~)]-if~&~Q(2)(x x &) {g(z z~)E ~(x)+ g(z~ z)E ~(x~)j

[E,'(x), E, '(x ~}]=tf ~~~ gt2&(x,. x, ') g(g' z)E, '(x') . .

From this algebra it is straightforward to derive that E,', E,', E,', G, commute zoitk each other at aEl

points in space. Therefore, H, =fd xX, consists of commuting pieces which can be diagonalized at each
space point independently. Hence, the eigenstates of Hp can be written in the form of a direct product

g( e, '(x„),e, '(x„),e,'(x„);g, '(x„), . . .), where the dimensionless numbers (et', gs', . . . ) are, up to a
scale, the eigenvalues of the operators (E,', G, ', .. . ) at the point x„. I expect a larger complete set
of commuting operators as will be shown below. The task is to impose the canonical commutation
rules on the states in order to discover relations among the complete set of labels (e,', e, ', e,', g,', .. . ).
For this purpose I find it extremely useful and illuminating to introduce new variables.

I introduce II, =-,A'll, ', lI, =-,X'll, ', and the h'&&Ã unitary matrices B„'~,B„'t (B„B„=B„B„)I.
rewrite the canonical variables (A,. ', E, ')as.
where the notation indicates an operator ordering, :B tIIB:=B~(A'/2)BIl'= ll'B—t(A. '/2)B =B tIIB+ &(N
—N ') 0(0)5 'l(0), in accordance with the tracelessness of A ~ E and the commutation rules specified be-
low. Then, the canonical rules [A, ', A, ~]=0= [E,', E,~], [A, ', E,~]=inst'l(x-x')5'~, etc. , are repro-
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duced as follows: (a) All B»««, B»'«, (B» ~}'«, (B„~)'«commute with each other. (b) All variables with
label "1"commute with all variables with label "2." (c) B and II commute with the quark variables (.
(d) The nontrivial commutators are

[11,'(x), B„'«(x )]=- [—'g B (x')]«&e(x, ' —x )5(x ' —x )5(x ' —x ).
The Hermitian conjugate of (6) gives [II', (Bt)'«]. Using Jacobi identifies one obtains

[II,'(x), II, '(x')] = if '~ 5(x, —x, ')5(x, —x, ')f e(x, —x, ')ll, '(x)+ 0(x, '- x,) II,'(x') j.
Similar equations hold for the variables (B», II, ) for which 8(x, -x,) appears. Note the identity
2A«&'A««'= 2(B A, 'B)«&(B A.'B)»=5««5» —N 5«&5».

With the new variables I obtain D,E, =:B»~««, II,B»., D,E, =:B»~B,Il,B»., so that G, ' and E,' in Eq. (1)
can be written in terms of B and Il. Thus, from now on I use (6) and (7) as the basic commutators.

The commutation rules, Eq. (7), of II, ' (and II,') are analogous to those of E,' [Eq. (8)]. I will de-
note E, '= II, ' from here on. Furthermore I define G, ', G, ' satisfying relations similar to Eq. (1) G, '
= —8, 11,', G, '= —B,II, ', G, '= —B,II,'. Using Eq. (7) I derive the remarkable algebra

[G«'(x), G (x')] =if' '6 '(x)5~'~(x -x')6, z, (8)

where I, J= 1, 2, 8, correspond to three local commuting SU(N) groups.
Further insight can be gained by noticing that B» (or B») is the oPeratox gauge transformation from

the axial gauge A, =0 to A, =0 (or A, =0). Then, II, (or II, ) is the analog of E, in the appropriate gauge

A, =O (or A, =O). I define B»=B»B» which maps the axial gauge A, =O into A, =O. Then, using Eq.
(6) I derive that G«' act as the generators of chirallike gauge transformations on B», B„,B»..

[G«', B~~'«] = (5«~(2A'B~~) «« —5«E(B ~„2A'}'«]5~'~(x —x') .

The structure of the three local commuting SU(N) groups is now quite transparent. It is convenient to
use the notation B«~=B~ ~ (B«z= 1, if I=J). The constraint following Eq. (1) takes the form

3 ' 31 1 13' ' 32 2 23' ~3 ' (10)

The quark color density p, ««(which also satisfies a closed algebra) can be written in three equivalent
ways which exhibit transformations into the gauges A, =0 and A, = 0:

p «&= (~ zX ((A.')««= (~B„zX'B»«j(B~,A'B»)«« = (~BS,—A.'B„rgB„A'B2,)'« .
I now interpret 1II' as sums of generators (like sum of angular momenta} along straight lines em-

bedded in three dimensions, since I can write

11'=f"dx 'G ', ll'= f" dx 'G ', ll'= f"dx 'G
1 g1 1 1 2 ~ 2 2 3 ~ 3 3

2

The boundary conditions to be applied on physical states are

(12)

11, (--,x„x,) =11, (x„--,x,)=II, (x„x„--)=0.

Equations (8) and (12) give [II, ', G~']=0 which
shows that we can diagonalize simultaneously the
larger set of operators G, ', G,', G,', l1,', D2', 03'
at each space-time point x independently. Fur-
thermore Eq. (5) allows us to write (E,' = Il, ')
X, = —,g'(ll, '+ Il,'+ Il, ') which has eigenstates of
the form Ii~e«'(x„), g, '(x„), . . . ), where the di-
mensionless (e«', g, ', . . . ) are the eigenvalues of
(Il«', GI', . . . ) up to a scale.

The commutation relations which I have just

worked out amount to these rules: (1) We should
expect that gl'(x„) are determined by quantized
pure numbers since G«'(x„) are Casimir opera-
tors of three commuting non-Abelian Lie algebras
at each x [like J' =j(j+ 1) for angular momen-
tum]. (2) Since II«' are sums of generators [Eq.
(12)] (like total angula, r momentum) Il«' must be
determined by quantized numbers as well.
(8) Furthermore, given a state with a configura-
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tion of points (x„)at which gz'(x„) e0 are speci-
fied, then the Clebsch-Gordan series puts a re-
striction, in terms of g, '(x„), on the maximum
and minimum quantum numbers allowed for
e, (x„) (like Ij, —j, I

~j &j, +j, for the sum of an-
gular momenta). (4) The boundary conditions Eq.
(13) mean that the total quantum number corre-
sponding to the sum of generators along any line
from —~ to + ~ must be 0 on physical states.
(5) The constraint Eq. (10) puts a restriction
among (g,2, g, ', g,2) at a given point x„, such that
they should add up to the quantum number speci-
fied by the quark color density p'(x„) (like adding
three angular momenta).

Let us now be more specific on the eigenvalues
of Gz', say G, '. Mathematically, this is ill de-
fined since there is a 5 'I(x -x') in the algebra
(8) satisfied by the distribution G, . I will intro-
duce a short distance cutoff 6 to define the singu-
lar operator product G, '(x) (and II,', etc. ). This
can be done by smoothing the 5 function 5(x, ) - (6/
w)(x, '+ bP) ' etc. , so that at the origin 5&'&(0)

=(wA} '. (An alternative approach is to introduce
a lattice with a spacing of order ws. ) I will keep
6 finite from now on since I expect that the full
theory must determine a scale parameter self-
consistently, as indicated, e.g. , by the renormal-
ization group. In this I etter 4 will determine the
thickness of the string. Eventually I expect it to
be related to the Regge slope and of course to the
first massive state.

I .can now write [G,'(x), G, '(x)] = (wg} ' if &~&

&&G, '(x) which shows that the dimensionless oper-
ator (wh)'G, '(x) =g, '(x) leads to pure quantum
numbers determined by the I ie algebra SU(1V).
For example, the Casimir operator is g, '(x) = ~(A-X ') for the fundamental representation, and
other quantum numbers for higher representa-
tions. One may, of course, have different quan-
tum numbers at different points x„. With similar
arguments I conclude that (wA)'ll, '(x) = e, '(x) leads
to pure quantum numbers for e,'(x). Thus, the
electric field Il,' =E,' = (w6) 4e,' is quantized, and
so are E,' and E,'.

The procedure for constructing some explicit
states can be explained simply if we first special-
ize to a pure SU(2) gauge theory, without fermi-

)
E

(XI~ Zg)

FIG. 1. Simplest closed string corresponding to
Eq. (18).

ons in two space and one time dimensions. Af-
terwards I reintroduce the quarks, SU(Ã), and
four dimensions.

Thus, eliminating the y direction, note that the
constraint (10) leads to G, ' = G,' = (wh) ' j(j+ 1) at
each point (x„,z„), where j=0, —,', 1, etc. , for
SU(2). Then, one sees the following:

(1) The state that has zero labels (g'= e' = 0) at
all points (x„,z„) is the vacuum with H, = 0. It
satisfies

G, '(x) I0& =0 = IIi'(x) I0&. (14)

(2) There a.re no states with one, two, or three
points with nonzero labels that satisfy the five
rules of the previous paragraph.

(3) The simplest nontrivial state must have non-
zero labels at four points which are at the cor-
ners of a rectangle as in Fig. 1. This arrange-
ment is necessary to satisfy the boundary condi-
tions (13), which also impose that g~'(n) =j(j +1)
must be identical at the four corners. By the
rules of addition of angular momenta [Eq. (12)]
I conclude that e,'=e,' =j(j+ 1) = constant along
the four sides of the rectangle, and 0 everywhere
else. Thus, this state corresponds to a closed
string with quantized "electric" flux tubes [E,'
=E,'=(w~) 'j(j+1)). The energy of the state is
H, = ~ay Idx dz(11,'+ ll, ') = 2g L(wa) "j(j+ 1), where
I. is the length of the string (perimeter of rectan-
gle) and wh is the thickness (g has dimensions).

(4) By arranging an infinite number of points to
satisfy the five rules, it is clear that the only
states possible are closed strings of any shape.

(5) These states can be constructed explicitly
by applying B and B~ operators on the vacuum.
For example the state corresponding to Fig. 1
with j= 2 is

I S& = Tr [B»(x,z, )B»(x2z, )Bs~(x2z2)B&~(x~z2) ]10& ~

We see that, e.g. , II,' applied to this state gives

II,'(x) I S&= [II;(x), [II,'(x), [Tr ( .f] ]] I 0& I S&(w&) '-,'(-,'+ l)8(x, —x)0(x —x,)[5(z—z,)+ 5(z -z,)].
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provided that the points are separated by distances larger than &. Here I have used Eqs. (14), (12),
and (9) with a smeared b function. Similarly, II,' and Gz' are diagonal on !S). Thus this state is a
closed string of quantized flux. The state for a string with arbitrary shape can be constructed by a
straightforward generalization.

It is clear that the above discussion applies equally well in four dimensions and with any group SU(iV),
leading to closed quantized flux tubes embedded in a three-dimensional space. When quarks are intro-
duced we must watch the constraint (10), which makes it possible to have open strings. For example,
it is now possible to have states on which G, '=G, '=0, G, '=p, ', where p, '= 4+B» ,X'B„-+[Eq. (11)].
This leads to an open string with quarks at the ends lying along the x direction. More generally, an
open string with arbitrary shape would satisfy (10) by making two of the GI'=0 at the ends, where the
quarks are located (p o 0), while making p(x) =0 and at least two nonzero G, ' at the intermediate points.
An explicit construction of such states is

y t(x„)B„(x„,) ~ ~ B~(x,) ~ ~ .B~,(x,)y (sx,)!0).

For the SU(3) group I'-shaped baryons with
three strings can be similarly constructed with-
out difficulty.

The above are typical states with the lowest,
constant energy density. Other states with high-
er, nonconstant, energy density can also be con-
structed via Clebsch-Gordan coefficients that
couple the (ij) indices on the B' s and g's to high-
er representations.

Obviously there is some global similarity be-
tween the present results and the lattice gauge
theory' of Wilson and Kogut and Suskind. How-
ever, the theories are different in detail. In par-
ticular l note that for 6=0 my Hamiltonian, writ-
ten in terms of either the old (A, E) or the new

(II, B) variables, is Poincard covariant. ' My cut-
off method does not require any drastic changes
in the form of the quantum theory. The B opera-
tors are local, unlike the link operators on the
lattice which are bilocal. Furthermore, at the
location of the B "electric" flux changes direc-
tion as in Fig. 1.

I have shown that, in the strong coupling limi-t,
QCD leads to closed strings as well as to open
strings with quarks at the ends. To make further

!
progress one must develop methods of calcula-
tion to include the neglected terms of the Hamil-
tonian. One must also obtain a better understand-
ing of the deep question of the scale parameter
6, and investigate whether the cutoff can be re-
moved by renormalization. These will be the
goals of my future research.
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