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Then, the tunneling probability between the classical vacua o.' and p becomes

P(P, t
I
o' u) = [us(P)/u&(e)] 2 u„(P)u„(n) exp[- (E„-E)(t -u)/h].

fl=P
(12)

For sufficiently large t -u, we can approximate Eq. (12) by taking only one counter term into account,
obtaining

p(p, t
~ n, u) = [us(p)u, (p)u, (n)/us(o. )]exp[(E —E,)(t —u)/k].

Thus we have found that the penetration rate of
the system with energy E & V(y) from the "false"
vacuum o. to the "true" one P is given by (E -E,)/
~, which can be computed immediately in each
practical case.

I conclude with the following comments.
(i) Quantized motion of the system in the energy
eigenstate is subjected to a Markov process.
(ii) Tunneling probability of the system with en-
ergy E & V(y) through the local potential barrier
y is given by the transition probability density of
the Markov process. (iii) In the semiclassical
limit, the tunneling probability thus obtained re-
duces to the well-known WEB prescription.
(iv) Penetration rate through the local potential
barrier y is proportional to the energy of the sys-
tem measured from the lowest energy eigenvalue.
(v) My approach to quantum mechanical tunneling
phenomena has a close analogy with Langer's
analysis'o of the nucleation process in classical
statistical mechanics. (vi) My formulation is
valid not only for one-dimensional systems but
also for higher-dimensional ones.
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The complex amplitude X&+iX&= (x+ip/mv)e' ~ of a harmonic oscillator is constant
in the absence of driving forces. Although the uncertainty principle forbids precise
measurements of X& and X& simultaneously (~&~~-h/2mcu), X& alone can be meas-
ured precisely and continuously ("quantum nondemolition measurement"). Examples
are given of measuring systems that do this job. Such systems might play a crucial
role in gravitational-wave detection and elsewhere.

A standard technique for measuring very weak
forces is to let them act on a high-Q harmonic
oscillator, and then to monitor the motion of the
oscillator. Examples are Dicke-Eotvos experi-
ments and gravitational-wave detectors. ' Some

future gravitational-wave detectors may use
massive (m -100 kg) dielectric crystals (sapphire
or silicon) with eigenfrequencies ~/2v -5000 Hz,
cooled to a few millidegrees where their funda-
mental modes would contain N=kT/R~ -104 quanta
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(phonons) and might have Q-10".' The number
of quanta would random walk due to Nyquist
forces, with a mean time between jumps (bjV = 1)
of ht = Q/~N'-3 sec—which might be long com-
pared to the readout time of the detectors. Clear-
ly, such oscillators are quantum mechanical de-
vices. '

In quantum theory, one describes an oscillator
by a generalized coordinate x and a generalized
momentum P with commutator [x,P]=iS. It is
useful to introduce the complex amplitude,

X, +i X2
—= (x +i//m(u)e ' (1)

where t is time, ~/2v is eigenfrequency, and m
is generalized mass. Note that (m~) 2X, and
(m&u) 'X, are canonically conjugate observables;
i.e., [X„X,]= iS/m~. In the Heisenberg picture
dX, /dt = ( i/S) [X-,, H z ], where H z is the interac-
tion part of the Hamiltonian, Thus, in the ab-
sence of interactions, X, and X, are constant.

All standard systems for measuring an oscilla-
tor attempt to measure X, and X, "simultaneously"
and with roughly equal precision —usually by
monitoring x(t) over one or more cycles. The un-
certainty principle, ~,M', —,'(([X„X,])~, limits
the precision of such measurements to AX, = 4X,
8 (S/2m&v) ', which corresponds to an uncertainty
bX 2 (N + —', )~2 in the number of quanta N = (m &u/

2S)(X,'+X,') ——,'. This limit was first derived by
Braginsky' for a Fabry-Perot coordinate sensor
and an optical lever, and later by Giffard' for
any measuring system whose output V(t) is a lin-
ear function of x(t) ~ The above derivation gen-
eralizes it to any system which tries to measure
both X, and X,.'

Braginsky' has pointed out that the above "quan-
tum limits" on AX„AX„and ~ pose serious
obstacles for gravitational-wave detection: To
encounter at least three supernovae per year,
one must reach out to the Virgo cluster of gal-
axies. But gravitational waves from supernovae
at that distance will produce ( LX, j

=
( bX, [

~ 0.3

&[m/(10 tons)](S/mu)~' in a mechanical oscillator
on earth, corresponding to ~a 0.4(N + —,')~'[m/
(10 tons)]. For detectors of reasonable mass
this signal is below the quantum limit.

Braginsky" has suggested a way out of this
impasse: Instead of attempting to measure X,
and X„measure the number of quanta N direct-
ly —and give up all information about the phase
)=tan '(X2/X, ). Unfortunately, direct measure-
ments of N suffer from two problems: (i) To-
avoid changing the number of quanta while mea-
suring it ("quantum nondemolition measurement"),

the interaction part of the Hamiltonian H~ must
commute with N —which means that H ~ must be
quadratic (or higher order) in the coordinate and
momentum of the oscillator. However, quadratic
couplings are much more difficult to achieve in
practice than linear couplings —especially when
the signals are so weak. (ii) From a sequence of
precise measurements of N one cannot infer the
precise time dependence E(t) of a weak force
(signal) driving the oscillator. One can only get
an estimate of the spectral density of E(t) near
the oscillator's resonant frequency. [From se-
quences of measurements of N on an infinite num-
ber of oscillators, all coupled to the same E(t),
one can infer (E„(t)~

—= [ f E(t')e ' ' dt'j].
This Letter proposes a new type of quantum

nondemolition measurement--one which circum-
vents the above two problems. The idea is sim-
pie: Measure X„and give up all infor, mation
about X, and about N. A linearly coupled system
to do this must have

fi~ KXq p = K-x p cosa)t —K(p/m&u) p sin&et, (2)

where y is an observable of the measuring sys-
tem and K is a coupling constant. In making its
measurement, the system perturbs X, but leaves
X, unaffected: dX, /dt = 0, dX,/dt = (K/m~) y-
[Heisenberg picture]. The output of the system
is some suitable observable Jwhich fails to com-
mute with q, and which therefore evolves as

dJ Z A A ~J g, A—=—[J H ]+———K[J y]Xdt n ™
where H„ is the Hamiltonian of the measuring sys-
tem. The readout for a suitably chosen J can give
a precise result for the value of X,.

Suppose that a measurement with such a system
at time t=0 gives a precise value $, for X„and
thereby puts the oscillator into the eigenstate

~ $,)
of X,(t = 0) —=X,(0). In the absence of driving forces,
X, remains constant, so that subsequent measure-
ments give the same precise value $,.

Now couple the oscillator to a weak, classical
driving force E(t)—e.g. , a gravitational wave.
The interaction Hamiltonian is Hz= -xE(t); and
the resulting evolution of X, is X,(t) =X,(0)
—f [E(t')/m~]sin(&ut') dt'. The initial state

~ $,)
is an eigenstate of X,(t) with eigenvalue $(t) = $,
—f [E(t')/me]sin(wt') dt'. Consequently, subse-
quent precise measurements of X, leave the state
of the oscillator unchanged and give the result
$(t). By a suitable choice of measuring system,
in principle one could monitor X', precisely and
continuously'; and from the results one could
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infer, precisely, the time dependence E(t) of the
driving force: F(t) sinut = —mu d(/dt. [In prac-
tice, one might want to couple two oscillators to
the driving force, and measure X, for one oscil-
lator, getting I'(t) sinut, and X2 for the other,
getting F(t) cos~t. ]

Systems that measure X, without perturbing it
are relatively straightforward to design. For
example, one can couple the oscillator sinusoidal-
ly to both a coordinate sensor and a momentum
sensor, and add the sensor outputs before send-
ing them through any amplifiers or other noisy
or dissipative circuit elements. Alternatively,
one can suitably modulate and add the outputs
from a coordinate and a momentum sensor which
have constant coupling to the oscillator. Unfor-
tunately, most such systems superimpose uncer-
tainty-principle noise on the output signal. The
figure shows an idealized system which, in prin-
ciple, can be noiseless. The oscillator is an LC
circuit; the sensors for charge (generalized co-
ordinate) and current (generalized momentum)
produce torques on a torsion pendulum; and a
torque balance measures the sum of the torques.
%e describe this system classically:

The LC oscillator consists of the two coils
(total inductance L) near the bottom of the figure,
and the four capacitor plates A, A', B, and B'
near the top. The total capacitance between A

and A' (via B and B' and a zero-impedance volt-
age source connecting them) is C. The general-
ized coordinate x of the oscillator is the charge
on plate A, the eigenfrequency is &u =-(1/LC)
and the generalized mass is the inductance L.
The coordinate (charge) sensor consists of plates
B and B' (mechanically attached to the torsion
pendulum), to which are applied a sinusoidal volt-

Torque Ba lance
r

b+a

b+ay
A

LII—

QiJ~& I, ~

4 Io(t)

FIG. 1, Schematic of apparatus described in text.

age difference Vo -=—(b/a)K cosset. This voltage,
together with the oscillator's charge x, produces
a torque I"= -Kx cosa t —(K'C cos'ut) q on the
pendulum. The momentum (current) sensor con-
sists of the thin wire loop at the bottom of the
figure, through which a sinusoidal current I, =(K/
M~) sinet is driven. The loop is attached to the
central rod so that its mutual inductance with the
oscillator, My, is proportional to the angular
displacement p of the torsion pendulum. Current
(momentum) in the oscillator produces a torque
I'=K(x/+) sin&et on the pendulum. The torsion
pendulum consists of the central rod and para-
phernalia attached to it, and the torsion fiber
that suspends it. (For the moment we ignore the
torque balance. ) The pendulum has moment of
inertia I, natural frequency 0, and generalized
coordinate (equal to angular displacement) P.

The complete apparatus is described by the
classical Lagrangian

,'L(x' —~'x') + ,'—I(P'—0'y') ——,'(K'C cos'&ut)P' —Ktxcosset —-(x/~) sin~t] y.

The generalized momenta are p = Bk/ax=Lx+(K/
v)(sjncvt)y and J=BC/& y =I@; and the Hamiltoni-
an, after quantization, is

H= 2p'/L+ ~LuPx'+KX, p + ,'J'/I+ ~IQ'p' —(4)

Here the eigenfrequency 0 of the pendulum is
shifted from its natural value 0 by coupling to
the coordinate and momentum sensors, O'= 0'
+K'C/I.

The interaction part of the Hamiltonian (4) has
the desired form (2). In the measurement proc-
ess, the oscillator's amplitude produces a torque
I'= (dJ/dt) „.&,~—- -KX, on the pendulum; and one

! monitors this torque and thence X, with a torque
balance that keeps p as close to zero as possible.
For an ideal torque balance with only uncertainty-
principle noise, I" can be monitored with preci-
sion AI'= (Ih/r')'I', where T is the balance's av-
eraging time for sensing rotations. The corre-
sponding precision on X, is

In the limit K'C/I&@'-~, the measurements can
be arbitrarily accurate and arbitrarily quick. '
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To achieve better accuracy than the usual quan-
tum limit (5/2L~) ', with averaging times less
than a cycle, requires K'C/I&o'a 1 ("strong coup-
ling" of oscillator to torsion pendulum) and also
strong coupling of the pendulum to the rotation-
sensing part of the torque balance, Such strong
coupling may be very hard to achieve in practice.

This system is only one of several schemes for
coupling to the X, of an LC circuit. By running
such systems backwards, one could measure the

X, of a mechanical oscillator (torsional or linear),
with the readout being a voltage or current in an
LC circuit, The X, of a microwave cavity could
be measured by coupling to "coordinate" and
"momentum" with appropriately placed electric
and magnetic dipole antennas.

If one is willing to accept a time resolution of
half the oscillator period or longer (v & ii/cu),

then one can avoid the simultaneous use of co-
ordinate and momentum sensors. For example,
one could make "pulsed" measurements of X; by
coupling only to x at times &ut =nii [HI of the form
(2) with K~ 5(sin&et)]. Physically, one measures
x =X, at &ut = 0, obtaining a precise value $, and

giving P a huge kick. Although the kick causes x
to evolve in an unknown way, it returns to (-1)"
x(its original value) at times ~t=n&. Subsequent
precise measurements of x at these times give
values (-1)"gn (if driving forces are absent), and

give unimportant kicks to P. Errors At in the
timing of such measurements —due to either tim-
ing jitter or finite pulse duration —produce a
spread bx & [(~b.t)(h/m&u)] ' in the results.

As another example, one could measure X,
with precision AX, «(ii/m&u)' ' by suitably coup-
ling a coordinate sensor to x in a continuous but
oscillatory manner, and by averaging the output
over a time T»1/cu. For example, one could
sinusoidally couple the coordinate x of the pri-
mary oscillator to the coordinate p of a second-
ary oscillator in a manner that gives the Hamil-
tonian

H = s P /m+ smio~xs+ Kjax cos&ot

+ 'i '/z ~ 'in' p2--

while perturbing X, strongly. This near-nonde-
molition measurement is analogous to the Unruh'-
Braginskym scheme for measuring the number
of quanta X in an oscillator. Their interaction
Hamiltonian has the form B~ =Kpx'; and they
measure N by averaging over a time 7» 1/~.
[Note that a precise coupling to N requires sum-
ming the outputs of sensors of x' and (P/m~)'.
For example, in an electromagnetic oscillator
(LC circuit or microwave cavity) x'~ (electric
field)' can be sensed by tension on a capacitor
plate or at a suitable point on a cavity wall, or by
the force on a dielectric object; p'~(magnetic
field)' can be sensed by induced-current forces in
a conductor or on a cavity wall, or by the force on
an object of high magnetic premeability; and the
sum x'+ (p/m&o) can be constructed mechanical-

Several fundamental principles underlie this
Letter: (i) A perfect nondemolition measure-
ment of an observable A. at times t„t„.. . , t„ is
possible only if" A(tn) =A(t, ) = =A(t„). (ii) For
continuous measurements, this requires dA/dt
=0—which usually means that A commutes with
the interaction Hamiltonian Hz, and that &A/Bt
= (i/l)[A, H —Hz]. (iii) Near-nondemolition mea-
surements can be achieved by coupling to an ob-
servable II (Hi ~ 8) that equals such an A plus an
oscillating quantity, by averaging over many
oscillation cycles, and by using a measuring sys-
tem with a spectral density of back-action force
that is vanishingly small near the oscillation fre-
quency.

These principles, and the examples discussed
in this paper, may have uses in a variety of fields
of physics and engineering.
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tion under Grant No. AST 76-80801 A01.

Then the interaction Hamiltonian, HI =Kpx cos~t
= —,'Kjo(X, +X,cos2~t+X, sin2n, t), produces a time-
averaged output "force" (-&H,/BP) on the secon-
dary oscillator proportional to X, with little con-
tamination from X,. If this "force" is measured
by a device whose back action has spectral den-
sity which falls off rapidly above f „-1/T, then
the secondary oscillator will perturb X, negligibly
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We have observed the g" resonance in the cross section for e+e —hadrons at EC,D) ~

=3770+6.0 MeV, of total width I'=24+5 MeV and partial width to electron pairs I',
=180+60 eV. The cross section for hadronic events which contain anomalous electron
provides both unambiguous evidence of D semileptonic decays and a branching ratio
measurement of (11+2)Q.

We report the first results of a SPEAR experi-
ment performed with a new detector DELCQ'
(Fig. 1), designed to identify electrons over 60%
of the total solid angle by means of a large at-
mospheric-pressure Cherenkov counter.

Six concentric cylindrical multiwire proportion-
al chambers (MWPC) extend from the beam pipe
to a radius of 30.0 cm. The inner four cylinders
subtend 80% of 4& steradians. Azimuthal read-
out is provided by axial anode wires of 2-mm
spacing and crude depth measurement by four
cylindrical high-voltage foils divided into 1-cm-
wide strips inclined at+ 45' to the beam axis.
The MWPC's are in a 3.5-kG magnetic field pro-
vided by two discrete coils wrapped on steel pole
pieces 85 cm apart with a return yoke on the out-
side of the detector. The magnet provides a near-
axial field over the MWPC volume, with an aver-
age field integral out to the magnetostrictive wire
spark chambers of 1.7 kG m.

Immediately beyond the MWPC the particles
enter a twelve-module ethane-filled Cherenkov
counter' sensitive only to electrons (& threshold

=3.7 GeVic). Particles which count by striking
the photocathodes are identified by plastic guard
counters. Within each module, the Cherenkov
light is focused by a 1.5 mx1.5 m ellipsoidal
mirror via a flat mirror onto a 5-in. RCA 4522
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FIC. 1, (a) Polar and (b) azimuthal projections of the
apparatus. For illustrative purposes, in (a) the appa-
ratus in the yoke has been rotated by 30'.
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