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By adopting Nelson s stochastic framework of quantum mechanics (i.e., the stochastic
quantization), a time-dependent description of tunneling phenomena is developed. As a
simple model, tunnel effect of a one-dimensional quantum mechanical system with bi-
stable potential is analyzed in much detail.

One often encounters the problem of barrier
penetration in quantum mechanical systems, e.g. ,
in the NH, molecule, in the & decay of nucleus,
in the Esaki diode, and in the recent gauge field
theory. To describe those barrier penetration
phenomena (i.e., tunnel effects), a time-indepen-
dent treatment with WKB (Wentzel-Kramers-
Brillouin) approximation ha, s been adopted. How-
ever, in view of the vacuum instability problem
in the recent gauge field theory, ' a detailed time-
dependent treatment of the tunnel effect seems to
be needed.

In the present Letter, I develop such a time-
dependent description of tunnel effects in a fully
quantum mechanical fashion. My approach is
based on Nelson's stochastic framework of quan-
tum mechanics, ' which is frequently called
stochastic quantization. '

To simplify the analysis, I restrict myself to
the dynamical system with only one degree of
freedom. Consider such a dynamical system
with Lagrangian

L =x2/2- V(x).

This represents a one-dimensional motion of a
particle with unit mass under the influence of the
potential V(x). I et V(x) be a bistable potential
with two relative minima x = n and x =P (see Fig.
I). The most familiar example is the anharmonic

one:

V(x) =ax'+bx'+ cx', c)0.

In classical mechanics, o and P correspond to
two inequivalent vacuum states. If the energy of
the system does not exceed the local barrier
height V(y), transition between two vacua cannot
occur. In quantum mechanics, however, it does
occur because of the tunnel effect. %hat I shall

FIG. 1. The bistable potential V(x).

1978 The American Physical Society 665



VOLUME 40, NUMBER 11 PHYSICAL REVIEW LETTERS 13 MARCH 1978

analyze, in the following, is this quantum me-
chanical tunneling phenomena.

Assume the system to be in an energy eigen-
state with energy eigenvalue E & V(y). A wave
function of the system us(x)«, (A) satisfies the
Schrodinger equation

—(h'/2)us" (x) + V(x)u~(x) =Bus(x),

where ~ denotes Planck's constant divided by 2m

and ' means differentiation with respect to X.
Within the conventional framework of quantum

mechanics, the wave function u&(x) does not tell
us any information about the details of tunneling
except the ratio of probability density lus(e) I'/
lu&(p)l'. However, in the framework of stochas-
tic quantization, it tells us that a quantized mo-
tion of the system in the energy eigenstate us is
subjected to a Markov process x(t) described by
a stochastic differential equation

dx(t) =a(x(t)) dt y dw(t).

Here, a(x) =@us'(x)jus(x) and ~(t) denotes a Wien-
er process with diffusion coefficient &/2. There-
fore, details of the tunneling between two inequiv-
alent classical vacua n and P can be given by ob-

!
taining a transition-probability law of the Markov

Introducing a relative transition probability den-
sity f (x, t ly, u) by

p(x, t ly, u) =us(x)f(x, t ly, u)us '(y). (6)

we can transform Eq. (5) into a self-adjoint form'

8 52 8~-h —f= —— + V(x) -E f2 ~x (7)

It is worthwhile to notice that the Markov proc-
ess x(t) has a stationary distribution lus(x) I'.
Since such a Markov process can not traverse
each node of the stationary distribution, ' tunnel-
ing through the local potential barrier y occurs
only when the wave function of the system us(x)
has no nodes within the barrier region. I consid-
er such a case of energy eigenstate. '

An elementary solution of Eq. (7) is given by
the Wiener integral'

process x(t). Hereafter, I consider the tunneling
from n to P.

A transition probability density p(x, t ly, u),
with t &u, of the Markov process x(t) is known to
be an elementary solution of the Fokker-Planck
equation4

&p s [a(x)p] h &'p

~X 2 ~X

f (x, t !y, u) =exp[E(t -u)/5] J„„,,e xp[- f„' V(& (s)) d/sh]p (wg),
t u

where pw denotes a Wiener measure with diffusion coefficient h/2 and 0(& l„) a totality of continuous
paths $ s with $ (u) y and ( (t) =x. Thus the transition probability density of the Markov process x(t)
can be written as

p(x, t!y, u) = [u, (x)/us(y)] exp[a. (t -u)/h] f„,„,) e x[pj„'V(k -(s)) ds/h]uw(4)
D(( „)

I

Equation (9) gives us a detailed time-dependent description of the tunneling between the classical
vacua a and p. Namely, p(p, t la, u) represents a tunneling probability of the system. Equation
(9) reduces to the well-known WEB prescription if we pass to the semiclassical limit:

(9)

P(P, tl, ) [ (P)/ ( )] ~[-& 'J'[!j()',V(g()) E]d ]

exp —(2/+) f„'(2[V(]) Z]]
- ITSX p

where [ ]~„means to take a maximum value.
Notice that I have succeeded in obtaining the "Euclidean" prescription of tunneling phenomena mainly

used in the gauge field theory' and other fields. ' In the semiclassical limit, tunneling occurs along a
classical Euclidean path which minimizes the Euclidean action integral in the exponent.

Now what is left for us is to compute the Wiener integral (9) and to obtain the tunneling probability.
Let (u„(x)3„-0 C: &,(A) be a complete normalized orthogonal system of eigenfunctions of the Hamiltoni-
an;

—(h /2)u„'(x) + V(x)u„(x) =E~„(x), n = 0, l, . . . .
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Then, the tunneling probability between the classical vacua o.' and p becomes

P(P, t
I
o' u) = [us(P)/u&(e)] 2 u„(P)u„(n) exp[- (E„-E)(t -u)/h].

fl=P
(12)

For sufficiently large t -u, we can approximate Eq. (12) by taking only one counter term into account,
obtaining

p(p, t
~ n, u) = [us(p)u, (p)u, (n)/us(o. )]exp[(E —E,)(t —u)/k].

Thus we have found that the penetration rate of
the system with energy E & V(y) from the "false"
vacuum o. to the "true" one P is given by (E -E,)/
~, which can be computed immediately in each
practical case.

I conclude with the following comments.
(i) Quantized motion of the system in the energy
eigenstate is subjected to a Markov process.
(ii) Tunneling probability of the system with en-
ergy E & V(y) through the local potential barrier
y is given by the transition probability density of
the Markov process. (iii) In the semiclassical
limit, the tunneling probability thus obtained re-
duces to the well-known WEB prescription.
(iv) Penetration rate through the local potential
barrier y is proportional to the energy of the sys-
tem measured from the lowest energy eigenvalue.
(v) My approach to quantum mechanical tunneling
phenomena has a close analogy with Langer's
analysis'o of the nucleation process in classical
statistical mechanics. (vi) My formulation is
valid not only for one-dimensional systems but
also for higher-dimensional ones.
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The complex amplitude X&+iX&= (x+ip/mv)e' ~ of a harmonic oscillator is constant
in the absence of driving forces. Although the uncertainty principle forbids precise
measurements of X& and X& simultaneously (~&~~-h/2mcu), X& alone can be meas-
ured precisely and continuously ("quantum nondemolition measurement"). Examples
are given of measuring systems that do this job. Such systems might play a crucial
role in gravitational-wave detection and elsewhere.

A standard technique for measuring very weak
forces is to let them act on a high-Q harmonic
oscillator, and then to monitor the motion of the
oscillator. Examples are Dicke-Eotvos experi-
ments and gravitational-wave detectors. ' Some

future gravitational-wave detectors may use
massive (m -100 kg) dielectric crystals (sapphire
or silicon) with eigenfrequencies ~/2v -5000 Hz,
cooled to a few millidegrees where their funda-
mental modes would contain N=kT/R~ -104 quanta
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