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I report on a calculation of radiative muon capture on "C(g.s,) to "B(g.s.), done within
the framework of the impulse approximation and a standard shell-model description of
the nucleus. It is shown that the photon asymmetry as well as polarization and alignment
of the '~B nucleus depends strongly on the magnitude of the induced pseudoscalar coupling.
The effects of possible contributions of second-class axial currents are also studied.

The long-standing problem of determining the clear states, rather than integrated capture
pseudoscalar form factor and testing its momen- rates. I I1ave investigated two typical examples
turn dependence predicted by partial conservation of such partial transitions, "C(g.s.) with I
of axial-vector current (PCAC) may be settled by to "B(g.s.) with I =1+, and "O(g.s.) with I =0'
measuring either radiative muon capture on the to "N(120-keV level) with I =0 . In this Letter
proton or an exclusive capture process on a suit- I report on some of my results for the first of
able nucleus. Both experiments seem to be of these processes
similar difficulty. In this Letter I show that ex-
clusive radiative capture on "C is a good candi- (P

date for this matter. I show, specifically, that and comment briefly on the capture process on
alignment and polarization of the daughter nucle- oxygen. A more detailed account of these calcula-
us "Bdetermine g~ if second-class currents are tions for both cases will be presented elsewhere.
assumed to be absent, rather independently of Inclusive radiative capture has been investigat-
the uncertainties inherent in the theoretical treat- ed by Rood and Tolhoek for the example of 'Ca. '
ment. In particular, these authors study the effects of

In a radiative capture process p, + (Z,A) —(Z varying the induced pseudoscalar and second-
-1,A)+v„+y one expects polarizations and asym- class tensor contributions as well as the depen-
metries to depend strongly on the spins and pari- dence of the predicted capture on nuclear-model
ties of initial and final nuclear states. Therefore uncertainties. Their treatment is based, how-
it is important to study exclusive radiative cap- ever, on the closure approximation over nuclear
ture, i.e. , radiative capture into definite final nu- final states.
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Exclusive radiative capture from "C(g.s.) to
"B(g.s.) has been studied by Bernstein. ' He was
the first to consider the effects of weak magnet-
ism g„and induced pseudoscalar g&. For g~ he
uses an effective pointlike y, interaction which
neglects the variation due to the pion pole. In
his calculation which uses the impulse approxima-
tion he also neglects the velocity-dependent nu-

clear matrix elements. Recently Beder has anal-
yzed partial radiative muon capture on 'He to 'H

applying the elementary-particle model. 4

In this work, my main goal is to study the sen-
sitivity of radiative capture to the induced pseu-
doscalar coupling and to possible second-class-
current contributions as well. The relevant form
factors are defined as usual through the nucleon-
ic matrix element of the weak axial current,

&P'I&'I P& =~(P') la,~'+ ~pap(P -P')"+ ~,g, (P -P') p(i~ "/2M)] ~'~(P).
Here I have introduced the scaling factors a~ and
n~ in order to study the sensitivity of the various
experimental quantities to the pseudoscalar and
tensor coupling. In the absence of second-class
currents and with the standard PCAC relation-
ship' for the pseudoscalar form factor, one has

n~ =0, @~=1~

g p(Q') =~~f.a.~,/(Q'- ~').

I arbitrarily take g~ to be equal to the magnetic
form factor g„("weak electricity" of same mag-
nitude as weak magnetism). In contrast to non-
radiative muon capture where these form factors
appear at a fixed momentum transfer of about
—m „', the leptonic momentum transfer in radia-
tive capture varies between approximately —m „'
and +m„', depending on the energy of the outgoing
photon. This variation with photon energy can be
utilized to test the sensitivity of the radiative cap-
ture process to these coupling terms and possi-
bly even to test the functional dependence (3) of
g~(Q') on Q' (if the tensor term is assumed to be
absent).

The capture process is treated in the impulse
approximation. The elementary amplitude p, P

-nv„y is derived from the amplitude for ordinary
muon capture using Low's theorem. ' This con-
struction proceeds along the lines worked out by
Adler and Dothan. ' The Hamiltonian is then de-
duced from this gauge-invariant relativistic am-
plitude by an expansion in terms of P/M (P being
the nucleon momentum, M being the nucleon
mass). Terms up to first order inP/M are kept.
They contribute up to 10%%uo in the angular correla-
tions and polarizations. The reduction to the non-
relativistic Hamiltonian is done by means of the
algebraic program SCHOONSCHII . The ground
state of "C is described by a fully closed P»,
subshell of a harmonic oscillator potential with
oscillator parameter 5 =1.65 fm. For the ' B
ground state I used the ~P»,",P»,~~ particle-hole
state coupled to spin 1' of the same harmonic os-
cillator potential. "

In this Letter I discuss the following observa-
bles": (i) the photon spectrum R(E «) for unpolar-
ized muons, normalized to the ordinary muon
capture rate, (ii) the photon polarization integrat-
ed over all directions of the photon with respect
to the muon spin, P «(E «); (iii) the polarization
pB(E «) and alignment az(E «) of the final nucleus.
These quantities are defined through the follow-
ing expressions:

R(E )= ' = '" (JdP, P, 'EiM„I')/(-'Z-l&„l').I"
q 2mMf E~„,) (

'
gp

SPtIIS SPlTI S

Here, R (E «) is the branching ratio of the radiative to the normal muon capture rate I"„;Pf is the re-
coil momentum of "B;M&; the radiative matrix element; Mf is the mass of the final nucleus; M„, is
the mass of the ("C, p, ) system, E ~„(=91.81 MeV) is the energy of the neutrino in ordinary capture;
T&, is the corresponding matrix element.

The integrated photon polarization P «(E «) is given by

P «(E,) =[IdP, P, Z '(IM'I'- IM I')]/[ JdP, P, r, (IM'I'+1M I')]
nuclea r spn, nuclear spiI,

muon spill muon spn
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The +, —signs in M' correspond to the respec-
tive helicities of the photon.

The polarization P, (E ~) of the final nucleus "B
along the photon direction is defined in exactly
the same way. For this case the +, —signs corre-
spond to the m, =+ 1 states of "Bin the direction
of the photon.

Finally I define the alignment of "B through

a B(E ~) = W+, + W ~
—2WO,

where 8'„ is the probability to find the m, = n
state of "Bsuch that

106R tMEY ']

3

0

R |Ex)= / &~
dEy

50

Y - ENERGY [ MEV]

100

W +W +IV =1.

For the numerical calculation I use the follow-
ing values for the coupling constants':

g„(0)= 1, g„(0)= —1.258, g~(0) = 3.7,

f, =131.7 MeV, g,~2/4m=14. 6.

In Table I the integrated branching ratios for
some values of aP and nT are given. Column 3
gives the total branching ratio

('& max
Jg t pt J 5 MAR dE

y

Column 4 gives the branching ratio for photons
with energy higher than 60 MeV:

f'& maxR high )60 MevR d~ y '

The last column gives the ordinary capture rates
(calculated with the same nuclear model) for the
respective values of nP and nT normalized to the
rate I'„' for nP=1 and nT =0.

In Fig. 1 the branching ratio R(E ~) is drawn.
One sees that the inclusion of an induced tensor
of nT =+2 changes the absolute rates but does not
change the shaPe of the spectrum. On the other
hand, the variation of nP changes the shape sig-
nificantly by shifting the central part of the spec-
trum towards lower energies as nP decreases.

FIG. 1. Branching ratio for the following combina-
tions of scaling factors:, O', P = 1, nT=0; ——,
m =0 n =0. ——n =-1 n =0 "-"— n =1P o T s s P t T s P

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 g 1 g + 2~ P 0 T

(Compare Rb;&&with R „,in Table I.)
Figure 2 shows the photon polarization P «(E «).

Note that the behavior of P (E ) is very similar
to the results given by Rood and Tolhoek' for
'Ca; this seems to indicate that the main contri-

bution to the 'Ca closure approximation comes
from the allowed Gamow- Teller transition to a
1' intermediate state. This similarity is specific
to the capture process (1). For the case of the
radiative "O(0')-"N(0 ) transition, I find a qual-
itatively different behavior of the asymmetries
and polarizations. " Figures 3 and 4 show pB(E,)
and a,(E,), respectively. A measurement of the
these quantities seems feasible. " Both observa-
bles are very sensitive to the values of nP and

Positive and negative values of nP are easi-
ly distinguishable by comparing p~ and a~.

For P~(E ~) and aB(E ~) the induced tensor shifts,
the curves for nT = 0 up and down without chang-
ing the shape significantly.

TABLE I. Branching ratios for photons from 5 to
91.81 MeV g«, ) and from 60 to 91.81 MeV (Rhigh) and
nonradiative capture rates I'z (nP, e T), nor malized to
I'& = l„(GP = 1, e = 0). I'&0=35.8&& 10~ s (cf.
Ref. 4),

1,0"

08.

0,6.

aP nT

.1 0
0 0

—1 0
1 2
1 —2

10'"& Iot

3.09
2.55
2.17
3.59
2.82

10 +high

0.452
0.277
0.208
0.580
0.369

l „(eP,O. T)/I „0

1.000
1,158
1.400
0.848
1.217

0.2-

0
0 50

Y - ENERGY f MEV]

100

FIG. 2. Photon polarization with the same conven-
tions for the curves as Fig. 1.
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FIG. 3. PolarizationP & (E&) of ' B, with the same
scaling factors as Fig. l.

-08-

FIG. 4. Alignment aB(E&) of ' B, with the same scal-
ing factors as Fig 1~

From these results I conclude the following:
(l) Measurements of Ps and as can determine sign
and magnitude of 0.'~ if e~ is assumed to be zero.
(2) A simultaneous determination of both nz and

n~, however, does not seem possible in a relia-
ble manner because of the remaining uncertain-
ties in the calculations.
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