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High-Energy Collisions of Heavy Nuclei
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The profile function for the collision of two heavy nuclei is calculated. In principle,
the method used sums all contributing diagrams. The single-particle inclusive distribu-
tion is predicted for very-high-energy collisions.

The main objective of this Letter is the summation of the Glauber rescattering series for the colli-
sion of a heavy nucleus projectile A, on a heavy target A, I have in mind lab energies upwards of a
few QeV, i.e., present or foreseeable experiments. The rescattering series comes from expansion in
powers of I' of the expression

A~

$„„(b)=fd'x, p, (x,) ~ ~ ~ fd'x„p, (x„)fd'y, p, (y, ) ~ ~ fd'y„p, (y„)g Q [1 —I;,(x, -y& —b)j,
i=1 j=l

(b)

(d)
FIG. 1. Some diagrams contributing to the scattering

of two heavy nuclei.

where p, is the single-particle density of nucleus A, [normalized such that fd'x p(x) = 1]. I',
&

is the
profile function for collision of nucleons i, j. The nuclear centers are transversely separated by b.

This series is considerably more complicated than that for a hadron-nucleus collision. Terms of
the series may be represented by diagrams, examples of which are illustrated in Fig. 1. Vertices on
the upper/lower levels are nucleons in nuclei A.„A„respectively. Each line joining nucleons i, j in-
volves a factor —I',.~. Line (a) consists of diagrams contributing to a hadron-nucleus collision. Line
(b} is the set of diagrams building the familiar Chou-Yang (CY} model. More complicated collisions
are shown in line (c). On each line of diagrams in lines (a)-(e) there is in momentum space only a mo-
mentum transfer O(A '), where 8 is a nuclear radius. However, in line (d) we encounter closed loops.
The nuclear form factors do not cut off the momentum flowing in a closed loop. Such momentum is
the ref ore of order GeV/c.

If the number, N, of lines occurring in a diagram is fixed and A„A, -~ then, as noted by Czyz and
Maximon, ' the dominant diagram at each N is in the set (b). It was argued' that in the limit. A„A, —~
with o'» fixed, the CY model is correct.

There are at least two features that make this argument incomplete. Firstly, in the rescattering
series, diagrams of varying A are added together with alternating signs, so that the full sum may not

be determined by the sum of the dominant terms
at each N. Secondly, unless 0»-0, the dominant
values of N in the series are surely dependent on

A»A, and increase as A„A, —~. Now each dia-
gram contains combinational factors involving N
and not estimated in Ref. 2. Since N, ff —Niff( Ay,

A,) these factors effectively acquire A dep'endence. +
It is therefore unclear which diagrams really
dominate if Ay A2- ~ at fixed 0».

I will show that the diagra. ms of line (b) are
dominant only if 0» -0. In the physical limit A„
A, -~ at fixed 0» one obtains a completely dif-
ferent answer.

The task of adding all the terms in the rescat-
tering series can be performed using Reggeon
field theory' (RFT). Suppose that each nucleon + + +. . .
in the collision can radiate eikonally an arbitrary
number of Pomerons. The reader unfamiliar
with RFT may prefer to think of the Pomerons
as pure imaginary Gaussian absorptive potentials.
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The Lagrangian for RFT is

z, = -'v —, 0+ &0(+~'s.P.4+ 't~-.(P4+ FN') (2)

The source term for emission of Pomerons by one nucleon of A, is

p;(x.)6(S)(e"'- 1) .
The absorption of Pomerons by a nucleon in A, is accomplished by

p.(y,)6( Y- X)(e"' - 1).

(5)

The S matrix at fixed impact parameter can now be written down.

Ag N1

J
d'x, ~ ~ d'x„g fp, (x,.) [exp(i'(x, , 0)) —lg

=-0 1
1

j=1
A2 N2

Z ' Jfd'S, " d'S II(C.(y,) [«p(t~(y, , y))-1])JI &q&t, e
42=0 2 $ =1

where E, is the action due to 2,. My notation is standard: Y is the lab rapidity of nucleons of A, . g'
=0~ as F-~. The path integral is to be performed with boundary conditions

/=0 for y&0,

/=0 for y& Y.

Thus

S~,~, = J6V6~e '
where

E=E, -A, ln Jd'x~e'~~p, (x~) -A, ln Jd'x~e'~~p, (x ~).

(6)

(7)

(8)

It is well known for similar eikonal problems4
that the S matrix is a certain generating function-
al. The approximatioo,

S =e ~&I/N, ,

where the action I',
&
is calculated using the equa-

tions of motion

5E/ay= 6E/6q = 0 (i2)

is not valid for our problem; so we cannot further
simplify the action. The path integral (8) is nor-
malized so that S~ ~ -1 as p„p, -0.

Since I am mainly interested in near future ex-
periments I concentrate on lab energies of a few
GeV. Therefore set 6, F0=0. Inclusion of non-
zero b, is trivial. If rp is nonzero the method
used can still be applied, but the algebra will be
a lot more complicated.

In principle S» can be estimated in the limit
1 2

A, p,.-~ by application of the saddlepoint method.
Generally one will obtain

igA, p, 5(y)e "~
Jd'x~, (x,)e ~«

igA, p, 5(Y -y)e "~
jd'x, p,(x,)e "~ (i4)

Setting tgp=s8(—y), i' =tH—( Y —y), and g p, A;
=6), , I obtain

s —8, e '/Jd' xp, ( )x"e" '=0

t —e,e '/Jd'x, p,(xJe 't""=0.
(15)

(16)

I now illustrate the properties of these equa-
tions in some simple situations. First consider
the case of one-dimensional space so there are
no transverse integrations in Eqs. (15) and (16).
The solution is simply s =A. ,g, t =A,g, and we

and Np is determined by considering small oscil-
lations about the classical minimum of the action,

In the differential equations we solve to deter-
mine A,~, Np, for energies of a few GeV, n'E' is
a small parameter compared with tt, ', A, ', g . 1
therefore neglect the third term of S'p. The equa-
tions of motion become
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have

S„,+= exp( —g'A, A,) . (17)

This is the CY result. That it is exact in one-
dimensional space is obvious from Eq. (1).

Now, consider physical (three-dimensional)
space but weak coupling (g'-0). The approxi-
mate solution of Eqs. (15) and (16) is now, as 0,.
-0

s —-O„ t=e„ (18)

and again the CY result is good.
At finite g' the solution of Eqs. (15) and (16) is

rather complicated. In order to illustrate the gen-
eral properties of the solution we shall ignore
"edge effects" and treat each nucleus as a cylind-
er aligned along the z axis (the direction of mo-
tion).

For typical b-A, -R, the denominators of Eqs.
(15) and (16) are O(l). At small g the solution is
(18). As g increases to a finite value, at large
A, p, , two additional real solutions of Eqs. (15)
and (16) appear. They are

a
b
~AA

I 2

T

A 2

tile is roughly

y ln(2Rm), (25)

where m is a mass parameter, roughly the in-
verse radius of a nucleon. So we expect for y( ln(2R, m) =y,

der(A, +A, )/dy =A, dv(N +N)/dy

and for Y&y & Y —ln(2R, m) = Y —y2

dv(A, +A,)/dy =A2do(N +N)/dy,

(26)

(27)

y, Y

FIG. 2. Predicted form of single-particle inclusive
production from two heavy nuclei at very high energies
(TeV per nucleon in the lab).

s, = 0„ t, =o; (19) Consequently, for

to = O„so =0. (20) Y & ln(4R, R2m') (28)

The corresponding actions are

F, = -A, ln(1 —P/~R, '),

F, = —A, ln(l —p/m R,2),

(21)

(22)

respectively. p(b) is the area of overlap of the
nuclei.

On the other hand, the original minimum of the
action evolves at finite g to the region s -ln6„
t-ln0, leading to an action I =E,+I',. This con-
tribution is therefore negligible.

It can easily be checked that there are no oscil-
lations about the solutions. We conclude that

S„~ (b) =e 1+e
1 2

(23)

do(A, +A, )/dy =A,A, dv(N +N)/dy. (24)

As has been discussed before' ' the fragmenta-
tion region for nucleus dissociation by a projec-

We now turn to a different question. As long as
the approximation of neglecting Pomeron interac-
tion is valid we ean at sufficiently high energy
predict the form of do/dy for A, +A, -v+X. Using
the Abramovskii-Kancheli-Gribov rules, ' the
only graph to contribute is the single-Pomeron-
exchange graph so that

we expect do(A, +A, )/dy to have the form sketched
in Fig. 2. The lab energy per nucleon of the pro-
jectile is of order thousands of GeV in formula
(28) for reasonable-sized nuclei, So the validity
of Fig. 2 cannot be tested for some time yet.

Our predictions for total and inclusive cross
sections differ from those of Kaneheli' and Amati,
Coneschi, and Jengo. ' Their models include
part of the effect of Pomeron interactions but al-
low each nucleon to be struck at most once. In
view of the weakness"'" of the triple-Pomeron
coupling these assumptions would not be expected
to apply at foreseeable energies,

For lower energy than allowed by (28) the cen-
tral hump of Fig. 2 should disappear.

I wish to thank D. Harrington, G. Iche, and
G. Varma for discussions.
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p-ray multiplicities have been measured as a function of the light-fragment atomic num-
ber Z3 for the above reactions. The failure of the measured y multiplicities for deep-in-
elastic collisions to rise with decreasing Z3, according to the rigid-rotation limit, ap-
pears more likely to be associated with a selective population of the low-Z fragments by
the lower-l waves rather than with an incomplete relaxation of the rotational energy.

Heavy-ion reaction studies have shown the ex-
istence of a rotating "intermediate complex" con-
sisting of a targetlike and a projectilelike frag-
ment which undergoes equilibration in its various
degrees of freedom. ' These equilibration proc-
esses, like the relaxation of the relative motion,
the neutron-to-proton ratio, and the mass asym-
metry, have been extensively investigated. ' The
angular momentum transfer from orbital to in-
trinsic rotation, leading to the equilibration of
rotational degrees of freedom, has been investi-
gated to a lesser degree. ' '

Measurements of y-ray multiplicities M have
proven to be a good technique for determining
the intrinsic angular momentum in compound nu-
clei. '7 This technique ean be applied to deep-in-
elastic (DI) and quasielastic collisions in order
to determine the angular momentum transfer as
a function of mass asymmetry as determined
from the light-fragment atomic number Z, . From
this dependence it is possible to obtain informa-
tion on the extent to which rigid rotation has been
attained.

In a previous study' of the reaction Ag+ 175-
MeV "Ne we have shown that (a,) for quasielastic
products, very close in Z to the projectile, M&
increases linearly with the mass transfer;
(b) for the deep-inelastic components at backwa. rd
angles, which show nearly complete kinetic-en-

ergy relaxation, the rigid-rotation limit has been
essentially attained; (c) for intermediate degrees
of kinetic-energy relaxation, and at somewhat
forward angles, y-ray multiplicities smaller than
those expected for rigid rotation are observed.
The limited data available for heavier systems"
do not show immediately recognizable patterns,
and are difficult to interpret because of the lack
of systematics and because of experimental limi-
tations. To bridge the gap from relatively light
to heavy systems, we have studied Kr-induced
reactions for targets spanning a large mass range("'"'Ag '"Ho and '"Au)

In contrast to the Ne+Ag system' where the
deep-inelastic products cover only a narrow angu-
lar momentum window, the present systems give
rise to DI products over most if not all of the an-
gular momentum range, with small complete-fu-
sion components. The much larger angular mo-
mentum range of these reactions [l=(0-300)hj
opens the interesting possibility of having differ-
ent mass distributions or, in other words, angu-
lar momentum fractionation may occur among
products of different Z. On the other hand, the
possible large transfers of energy and angular
momentum to the heavy fragment can also favor
decay modes which can efficiently dispose of the
angular momentum, like fission and 4He emis-
sion. In order to eliminate such a difficulty, we
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