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susceptibility for a series of ternary Pd FeMn al-
loys with varying Mn concentration. Three dis-
tinct concentration regimes are determined
which correspond to a giant-moment ferromagnet,
a double or mixed transition (paramagnetic- fer-
romagnetic - spin-glass), and a spin-glass. Both
the susceptibility experiments and the phase dia-
gram are interpretable in terms of the model of
Sherrington and Kirkpatrick. An external mag-
netic field enhances the ferromagnetism while
hindering the formation of the spin-glass phase.
This opposite shifting of T, (H) and Tz(H) leads to
an interesting variety of .critical and multicriti-
cal phenomena.
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The Edwards-Anderson spin-glass phase is studied via time-dependent Ginzburg-Lan-
dau models with quenched impurities. A perturbation expansion is used to study the dyna-
mics and statics without the use of the replica method. It is shown that the spin correla-
tion function has at ' long-time tail in the spin-glass phase.

The Edwards-Anderson spin-glass phase, characterized by a frozen magnetization with zero spatial
average, has received much recent attention. ' ' Most of the analytical studies have been on the static
properties using the replica (n- 0} method. In this Letter we report results on both the dynamics and
statics ot certain time-dependent Ginzburg-Landau (TDGL) models which exhibit a spin-glass phase.
We make no use of the replica method. In fact, it is our purpose to avoid the replica method, which is
in several ways artificial and conceals the basic physics. This simple analysis, using TDGI. models,
is complementary to the numerical Monte Carlo work and to other methods reported recently. "

Our models are defined by the following equation of motion for an n-component vector spin density
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o(x, t) in a d-dimensional space:

1 ~0——=(- V'+ r, + y+ 2uo')a+h+a(a o}-—a'o+ —r„,y~t 'n y'
( y(x)(p(x')& = a5(x —x'),

(a,(x)a,(x')) = &'&(x —x') &,,
(g,.(x, t)g,.(x', t')&= 2y5(x —x')5(t- t')o, , (4)

The external field h, the random easy axis a, and the noise r. are n-component vectors. A random lo-
cal temperature is effected by y. We assume that y and a are time-independent Gaussian random vari-
ables due to the quenched impurities and r. is a Gaussian noise. For n= 1, the terms involving a drop
out. The para, meters r„u, 6, b, ', and y are constants in standard notation. For 6 and 6' very small,
analyses have been carried out studying the effect of weak impurities on the ferromagnetic critical
point. ' "

Our main results are as follows: (a) A mean-field analysis shows that there is a range of values of
z, and 6 where a spin-glass phase appears, characterized by a lack of ferromagnetic order, but where
the order parameter q, defined by

is non-zero. Here the inner angular brackets (&, stand for time average and the outer ones for space
average. For x, above this range the system is in a paramagnetic phase. (b) When n & 2 d & 4 z'g0
there can be no ferromagnetic phase. The Iow-x, phase is a spin-gla, ss phase. " (c) In the limit n- ~,
with u, A, A'~1/n, the mean-field theory becomes exact. The expansion in powers of 1/n is well de-
fined except near the critical point. (d) The spin relaxation time is infinite in the spin-glass phase.
More precisely, the correlation function

6,~C(k, (e) =- fdtd'xe' ' ""(o(x t)o (0 . 0))

blows up as &u
'~' as &o-0. This means a t '~' tail of the Fourier transform of C(k, &u).

We proceed to outline the derivation of these results, and to comment on them.
(a) For simplicity, set n= l. The time average (o„&, is, to first order in the external static field k,

at a given &p,

(o„),-=fd"x~ '" "(o(x,'t)&, =G,(k, 0)k„+G,(k, 0) fd"k'p„„,G (k', 0)k, ,y. . . , (7

11= fd"p G,(p, o)'.
(8)

(9)

Therefore, we can have q+ 0 even if h - 0 provid-
ed that

1 =II'. (10)

This defines the spin-glass phase. [In G„we de-
fined r =G '(0, 0), where G(k, a) is the full spin-
response function. ] If we keep only the graphs in
Fig. 1(c) for G ', we have

~ =r, —(a —~2)fd'p G, (p, 0) + ,' uq—(11)

where G, (k, u) -=(- i++ x+ k') ' is the zeroth-or-
der spin-response function. Figure 1(a) shows
the series (7)." Now, square (7) and average
over y. If we keep only terms shown in Fig. 1(b),
we obtain

q = ((o», '=(Il+ Ilail+. . . )k'

! Equation (10) determines r and Eq. (11) deter-
mines the order parameter q' as a function of r, .
The spin-gla, ss critical point &« is given when
q'- 0. This is our mean-field theory. In fewer
than four dimensions, the spin-glass phase al-
ways overrides the ferromagnetic transition at
+0 +Qf Note that && 0 at r, =x«and & =0 at &0

, in (10), II'is a decreasing function of &.
Hence r«-+pf&0. For n& j., the above ladder ap-
proximation is easily generalized to include 4'
and to give qualitatively the same results. If &'
=0 and & is sufficiently weak, however, previous
analysis beyond the mean-field approximation'
indicates that the ferromagnetic transition wins
out.

The spin-glass ordering that occurs here is
surprising if we accept the widely held view that
the spin-glass state is the consequence of bond
competition. The model we have just considered
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(c)
FIG. j.. (a) Graphs for the spin-response function at

a given impurity configuration p. (b) Ladder approxi-
mation for the square of (a) averaged over q. Small
circles indicate Gaussian averaging. (c) Self-energy
graphs in the ladder approximation. The 222,q term of
(11) is not shown.

is commonly described in terms of a ferromagnet
with a spatially random transition temperature
due to bond dilution, and there is no explicit evi-
dence in the model for antiferromagnetic bonds',
which would appear as V' terms with positive
coefficients in the first set of parentheses in (1).
One possible explanation for this apparent contra-
diction is that the continuum model considered
here is the result of taking a fixed-length spin
system with bond competition, transforming to
continuous spin variables using perhaps the dual
transformation utilized by Hubbard, "and then
thinning out degrees of freedom. The random
transition temperature might then be the impor-
tant signature of the competition. Another pos-
sibility is that bond competition is not necessary
to produce spin-glass behavior. This latter con-
jecture seems far-fetched to us in the light of
our current understanding of spin-glasses. There
is, however, intriguing evidence based on a real-
space renormalization-group analysis that in a
very dilute system —one with few effective bonds—a very small number of antiferromagnetic
bonds suffice to turn a ferromagnet into a spin-
glass. " The possibility that bond dilution alone
can induce spin-glass behavior merits at least
passing consideration. It should be emphasized,
however, that the result we have just been dis-
cussing follows from a mean-field analysis.
There always remains the possiblity that a more
refined treatment will invalidate it. It would cer-
tainly be useful to analyze the renormalization-
group runaways in random systems" some of
which, we believe, are signaling a spin-glass
transition.

G '(k, ar) = G (k, 0) + v(k, &u) .

Then by the identity (the fluctuation-dissipation
theorem) C(k, &u) =ImG(k, cu)/&u, we have

The general analysis is a simple extension of the
following mean-field approximation. Keeping
only Fig. 1(c) for the self-energy graphs, we
have, for small co,

v = —i(u —a fd~P [G(P, (o) —G(P, 0}]

= —in+ b, ilv+ O(v') . (14)

Since in the spin-glass phase 1= AII by (10}, Eq.

(b) The exclusion of long-range spin order for
n «2, d - 4, and &' & 0 follows from an argument
along the line of Imry and Ma's that a quenched
random magnetic field destroys long-range or-
der. "'" Let us assume m =((0,),) W 0. We then
have what looks like a random magnetic field
with zero mean, ma, a —m 'a m, according to (1),
which would destroy m. Therefore m =0." The
field is not isotropically distributed, but it can
still be shown that transverse fluctuations are
massless and the same kind of expression that
diverged in Imry and Ma's argument diverges
here.

Both Ha, rris and Zobin" and Chen and Lubensky'
have considered the possibility that a random
easy axis can induce spin-glass-type behavior.

(c) Naturally, one might ask under what condi-
tions the above mean-field, or ladder, approxi-
mation becomes exact. The answer is that it
does whenu, &,&'~1/n andn —~, as a simple
counting of graphs reveals. Although this pro-
vides an ordering of perturbation terms, it un-
fortunately does not allow a convenient study of
the critical point. As Chen and Lubensky' have
pointed out, the critical properties of the spin-
glass-to-paramagnetic transition when the spin-
glass state is due to random uniaxial anisotropy
are those of ann =1, or Ising-type, system with
bond disorder, regardless of the number of com-
ponents of the original spin system.

(d) Let us define v as the frequency-dependent
part of the spin-response function G(k, e),
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(14}gives vertu'~'. To include all graphs, write

v(k, &u) = —ice+ Z„(k, &u) —Z,(k, 0) + Z,(k, +) —Z,(k, 0), (15}

where Z, are self-energy graphs which would remain self-energy graphs when impurity lines are cut

(i.e. , before averaging over the impurity distribution), and Z, would not. For small &u, (15) gives

v(k, cu) = d~p v(k, &u) — ' ' G'(p, cv) + O(v') —O((u) —i(u,5Z,(k, co)

5G, &u Q) ~ P

(16)

where the O(ar) terms come from the dependence
on Z, . Now we note that the generalization of
(10) is that the equation for A(p),

Z(p) = fd'P Z(P)G(P, 0)'I(P, k), (17)

has solutions. Here I' is the "rung" in the lad-
der sum. Graph by graph, one verifies that

F(p, k) = —[5Z,(k, &o)/5G(p, ~) 1 (18)

From (17), (18), and (16), we again conclude that
vo-cv'~', i.e. , C(k, u&) ~su '"." This t 't' behavior
also appears in Monte Carlo simulations. ' Equa-
tion (18) is an important identity peculiar to sys-
tems with quenched random impurities. It shows
that a static quantity I' can be viewed as having
a dynamic origin.

With regard to spin-glass critical statics, our
mean-field approximation yields the same mean-
field exponents for the paramagnetic-to-spin-
glass transition as have been obtained elsewhere. "
It is al.so possible to extend our analysis beyond
the mean-field approximation. We obtain exactly
the same ~-expansion results for critical statics
as Lubensky and co-workers' obtained using the
standard approach based on the replica method.
Thus our method is, we believe, the correct gen-
eralization to dynamics of the static models wide-
ly believed to describe the Edwards-Anderson
spin-glass transition. The calculations of the
critical statics and further details of the above
analysis will be given elsewhere. "
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Cr' COUPLING TO LATERAL PROTON CON-
FIGURATIONS IN KH,As04. J. Gaillard, P. Gloux,
and K. A. Muller [Phys. Rev. Lett. 38, 1216
(1977)].

On page 1217, column 1, the sentence beginning
on line 20 should read as follows: "%e found that,
in the + 45' direction in the c-a, b -e, and a-5
planes of a right-handed axis system (a, 5, c}, the
ENDOR lines of one of the eight sites were C, A. ,
and B', respectively. "

STUDY OF DENSITY FLUCTUATIONS IN THE
ALCATOR TOKAMAK USING CO2 LASER SCAT-
TERING. R. E. Slusher and C. M. Surko [Phys.
Rev. Lett. 40, 400 (1978)].

The title should be as given above.
Two numerical corrections are necessary in

the first column on page 402: In line 15, 5 should
be 6 and in line 20, 12 should be 14.
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