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Two recently studied experimental systems are shown to constitute realizations of
two-dimensional anisotropic N-vector models. Along with a renormalization-group
treatment of a general Hamiltonian encompassing these models, we discuss new kinds
of multicritical points, nonuniversal critical behavior, and experiments for further

study of these systems.

The study of phase transitions in adsorbed thin
films is a rapidly developing field of high current
experimental and theoretical activity. The exper-
imental methods (such as thermal measurements
and diffraction techniques) are approaching the
point where reliable determinations of phase dia-
grams and critical exponents are becoming pos-
sible.* Theoretical models for overlayer sys-
tems can be derived by symmetry arguments?
and analyzed by renormalization-group (RG) or
other techniques. This comprehensive approach
is applied here to the magnetic phase transition
in molecular oxygen adsorbed on graphite®* and
to the order-disorder transition in atomic oxy-
gen on tungsten.’ These systems represent the
first examples of two-dimensional (2D) anisotrop-
ic N-vector models (Heisenberg and XY with cu-
bic anisotropy). Realizations of Ising and Potts
models were discussed previously.® Anisotropic
N -vector models in 2D 7 are of special interest
since they exhibit features such as nonuniversal
critical exponents,®® new kinds of multicritical
points, and new universality classes.!® In 2D the
anisotropic perturbations are relevant” and grow
under RG iterations. This allows the mapping of
the Landau-~Ginzburg-Wilson (LGW) continuous-
spin models, which are derived on grounds of
symmetry,? onto discrete spin models, which
can be conveniently analyzed by position-space
RG methods. The two anisotropic N -vector mod-
els are shown to be related to special cases of a
general, discrete N-state model termed the
(N «,Ng) model. The model is introduced and dis-
cussed. In this work, the hypothesis is made
that if a discrete spin model and an experimental

system are described by the same LGW Hamilton-
ian, all three belong to the same universality
class. This hypothesis has not been extensively
tested in 2D, Specifically, the phase diagram
for.the general six-state model is investigated
using duality transformations'! and Migdal’s ap-
proximate RG recursion relations.’? Experi-
ments to test the applicability of the models and
to investigate their properties are also discussed.
First, consider overlayers of molecular oxy-
gen physisorbed on graphite., The system ex-
hibits a phase transition into an antiferromag-
netically ordered state [Fig. 1(a)l at 7, =11.3 K,
which is apparently continuous.3'* Neutron scat-
tering experiments?® indicate that the lattice struc-
tures of the disordered and ordered O, phases
are incommensurate with the substrate and al-
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FIG. 1. Structures of the ordered phases of (a) O,
adsorbed on graphite (the arrows denote the spin orien-
tations on the distorted triangular lattice), and (c) oxy-
gen adsorbed on tungsten (the heavy dots denote ocecu-
pied sites). The Brillouin zones and wave vectors, k,
that define the different ordered states, are shown in
(b) and (d), respectively.
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most identical to the a-b planes of bulk B- and
@-0,. For this reason we will assume in the fol-
lowing that substrate effects can be neglected.*?
For T>T, the O, molecules form a closed-packed
triangular lattice (symmetry P6mm). For T<7T,
the lattice is distorted [Fig. l(a)]. The magnetic
moments of the O, molecules are confined to the
plane of the surface. Under these assumptions,

symmetry arguments? yield the LGW Hamiltonian |

H =~ [%E(V%)z + %1’1299:'2 +u(E‘Pi2)2 + 02¢i4],

Hy == [322(V9,)? + 57,2 00,2 + 0 (% = 39, 2,) + Q2% ,2)?],

H3 = (@32 - (pzz)d)l + (1/\/—5)(3(/)12 -2<Pi2)1/)2-

Suppose H, and H, exhibit transitions at 7,% and
TC(Z) when H,=0, What is the effect of the coup-
ling term? When 7,2 > T,®), the ¢ fields order
first, inducing via H, an effective ordering field
on ¥, This mechanism yields a single transition
of cubic Heisenberg character. When 7, V< 7,®,
first the ¥ fields undergo a continuous, three-
state Potts transition, producing a distorted non-
magnetic intermediate phase. The coupling H,
lowers the effictive quadratic coefficient of one
@ component. Then at a lower temperature, this
component will undergo an “elastically driven”
Ising transition. This type of phase diagram is
contained in Fig. 3, where it is exhibited by the
“cubic” plane, x,=2.

Present experimental evidence is consistent
with the assumption that O, on graphite has a
single, continuous transition, which, therefore,
could be of cubic Heisenberg character. The
specific heat data exhibit one sharp peak.* In the
neutron scattering experiment,® the question
whether the magnetic order and the distortion ap-
pear at the same temperature was not investigat-
ed. Further measurements of the phase diagram
and the critical exponents @ and 8 are needed to l

of Egs. (1a)-(1c) below. The magnetic order pa-
rameter ¢ belongs to a three-dimensional irre-
ducible representation, ¢;=2.z exp(ik* R)Sz* 7;,
where 7; Lk; (6=1,2,3), defined in Fig. 1(b). The
lattice distortion is described by components of
the strain tensor €;; that belong to a two-dimen-
sional representation, ¥, =€,, and ¥, =3(€,, —¢€,,).
Hence the LGW Hamiltonian has the form A

=H (o) + H,(¥) +wH (¢, §) with

(1a)
(1p)
(1c)

confirm that the system belongs to this new uni-
versality class. The conclusion can also be test-
ed by studying the phase transition in a magnetic
field applied perpendiculav to the substrate, If
the system is in the cubic Heisenberg regime,
the field is expected to lower the transition tem-
perature and, when sufficiently strong, to cause
a splitting of the transition. The point P is a
special multicritical point as discussed below.
In contrast, application of a field parallel to the
substrate should result in two-dimensional bi-
critical behavior of the usual kind.

Second, consider atomic oxygen chemisorbed
on the [110] face of tungsten.® The order-dis-
order transition exhibited by this overlayer is
described by a 2D XY model with cubic anisot-
ropy, Eq. (2). The W atoms form a 2D lattice of
space-group symmetry C2mm. The oxygen over-
layer orders into a superlattice consisting of di-
agonal rows of alternately occupied and unoccu-
pied sites, Fig, 1(c). Thus the order parameter
belongs to a two-dimensional irreducible repre-
sentation, ¥ ,=¥, and zpz;zE Yy, with El,Ez defined
in Fig. 1(d). The appropriate LGW Hamiltonian
is

H=={2[(V9,)2 4 (V9,21 4+ 27 (0 2 + 9,7 + 0 2 + 4,52 1+ 09, + 4,9)], (2)

which is identical to that of an XY model with cu-
bic anisotropy. This model has been suggested
to exhibit nonuniversal critical behavior, with
exponents that vary continuously with the anisot-
ropy, v.° Experiments testing this conjecture
would be instructive. The anisotropy parameter
v may be varied either by changing the coverage
or by using different substrates and adsorbates
that produce similar structures. All models
known to exhibit continuously varying exponents®
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! lead to LGW Hamiltonians of the form of Eq. (2).

By a Hubbard transformation* we have mapped
the Ashkin-Teller model onto (2) and found that
v is a function of the parameter that governs the
variation of the critical exponents.

The method of calculation is briefly described.
The behavior of a Heisenberg system with cubic
anisotropy”’ (such as O, on graphite) is investigat-
ed in three steps. First, we study the Hamiltoni-
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FIG. 2. Flow diagram for the two-dimensional Hei-
senberg model with cubic anisotropy, as obtained by
the Migdal recursion scheme.

an for fixed length spins on a square lattice,

3
H/byT ==K 23 8;°8; - v20 22(5;(9)4, (3)
<ij> i a=1
by applying Migdal’s approximate renormaliza-
tion-group formalism.'® Decimating every other
spin, we evaluated the necessary integrals nu-

merically, and determined K by projection onto

z

FIG. 3. Phase diagram of the N, =3, Ng=2 model,
as obtained by Migdal recursion relations. The fixed
points are L (H), low (high) temperatures; D, decoupled
Ising and three-state Potts; P, six-state Potts; S, self-
dual; C, cubic; Iy,I,, Ising; J4,dJ,, three-state Potts.
The plane x , =2z corresponds to the subspace of cubic
symmetry; it contains cubic, Ising, and three-state
Potts transition lines that meet at P.

§:-§; — const. The flow diagram of Fig. 2 is obtained. The result means that the critical behavior of
model (3) is determined by a |vl== fixed point, i.e., that of a discrete-spin Hamiltonian. For v>0
the spin can point in six directions and for v<0 in eight directions. Second, to study the critical prop-
erties of such N-state systems we consider a generalization of the Potts model, termed the (Ny,Ng)
model. In this model there are fwo discrete variables, o;=1,...,N, and 8;=1,,..,N, associated

with each site of a square lattice,

H/kBT: - Z; [Ko.oéai.ajﬁﬁi.ﬂj +Ko,15a,-,ocj(1 ‘5B,~,Bj)

<ij>

+K1.0(1 _Goci.aj)éﬂi.ﬂj"'Kl.l(l _Gai ,oc]-)(l - 5(3,-,13]-)]. (4)

A convenient choice of variables is x,=exp(X, ,
-Ky,0), *p=exp(K,,, ~Ko,0), and z=exp(K,,, —K,,o).
In the case of a ferromagnetic ground state the
physical parameter space is in the cube 0
<Xg,%p,2 <1, With N, =3 and Nz =2 the Hamil-
tonian defines a six-state model. The plane x

=z corresponds to the Heisenberg system with
cubic anisotropy. Migdal’s approximate recur-
sion relations'? yield the phase diagram shown

in Fig. 3. On the plane x, =2z the system exhibits
either one phase transition (governed by the cubic
fixed point C) or two phase transitions (governed
by the three-state Potts and Ising fixed points J,
and 1,), depending on whether x, is greater or
less than x3. This is exactly the behavior that is
expected for the Hamiltonian (1), Third, we per-
formed a Hubbard transformation on (4) with N,
=3, Ng=2, and x, =2, and obtained a LGW Hamil-
tonian identical to third order with (1a)~-(1c).

This completes our argument on the applicability
of this model to the system O, on graphite.

The Migdal method involves crude approxima-
tions. Determining the phase diagram for the
geneval N, =3, Ng=2 six-state model not only
shows the cubic plane embedded in a larger pa-
rameter space but also allows us to check the
method against special, exactly known results.
The six-state model reduces to the following mod-
els: six-state Potts (on the line x,=x5=2), de-
coupled Ising and three-state Potts (on the sur-
face x,xg =2), and planar six-state® (on the line
x4 =23,x5=2%. The Migdal recursion relations
preserve all symmetries of the general model,
including x, =2. We were not able to achieve that
within the Niemeijer—van Leeuwen approach,
The Migdal method has been also found to repro-
duce accurately the phase diagram?®® for the Ash-
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kin-Teller model (N, =Ng=2). The phase diagram
in the cubic plane, x, =z, agrees with results by
Aharony.'® We note, however, that the vicinity
of the Potts point P is not yet understood. The
Migdal method, as well as the other approximate
RG approaches, fails to reproduce the first-order
character of the six-state Potts model.'® Hence
one might expect first-order phase transition
lines to extend from P and new tricritical points
separating them from the second-order lines
governed by the fixed points C, I,, and J,. These
questions are being investigated by Monte Carlo
techniques. The application of exact expansion
methods would also be useful, o

An exact duality transformation,!' X=D(X), ex-
ists for the (N,,Ng) model:

Ro=[1=x+Wg =1)(xp —2)]/1,
Z=[1-xy-xg+2l/8,

where A =14+ Ny =1)xo+WNg=1xg+ Ny =-1)Ng
—1)z. The equation for X is obtained by inter-
changing « and B in (5). Having found the duality
transformation, one can perform the decimation
upon which Migdal’s renormalization-group
Ansatz is based. This leads to the recursion re-
lations ¥’ =DMD™®)] (A denotes the scale param-
eter) that were used to derive the phase diagrams
of Fig. 3 and of the Ashkin-Teller model.

In summary, we have pointed out that two re-
cently studied experimental systems constitute
physical realizations of theoretical models of
current interest. We investigated the phase dia-
gram and critical properties of the models, and
suggested experiments for further study of these
systems. Other systems that may provide reali-
zations of 2D anisotropic N-vector models are
layered magnetic compounds such as Rb,FeF,
and Rb,CrCl,.
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