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FIG. 2. L&(x,t) as a function of dimensionless time s
anglo it. Full line, x=4ij./20; dashed line, x=4'X.

the former rate, and occurs at a later time s
=12.35, with n/t, =0.24. From Fig. 2 one sees
that L,(x = &&, s) decays slowly initially and then
has faster, almost sinusoidal oscillations; these
oscillations are stimulated by the field due to
emission by AMO's at other points in the cavity.
Chang and Stehle' have studied the interaction of
TLS's with the electromagnetic field between par-
tially reflecting mirrors, applying a generalized
Weisskopf-Wigner" method. They predict an ex-
ponential decay of the TLS's even in the limit of
totally reflecting mirrors, which is contrary to
present results and also to the reasonable expec-
tation that the de-excited TLS's will reabsorb the
photons when the radiation density in the cavity is
high enough. Results for longer times and an
analytic approximation for the case of "continu-
ous" distribution of AMO's in the cavity (Af- ~)
are given elsewhere. "
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Significance of E Distributions in Scattering Experiments
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Evidence is presented which suggests that a class of modified Bessel-function distri-
butions may have special significance in describing the statistics of radiation scattered by
media characterized by a wide range of length scales. It is shown that these distributions
may be obtained mathematically by applying a limit procedure to the random-walk prob-
lem with a variable number of steps. The choice of distribution for the step-number
fluctuations is briefly discussed.

In an experiment involving the scattering of
electromagnetic radiation the scattered field
E(r, t) at detection point r and time t can frequent-
ly be represented as the vector sum of indepen-

dent contributions from a number A of scattering
centers within the scattering medium. Systems
for which this approach has proven useful include
not only collections of discrete scatterers such
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Z(r, t) =e' 'Qa, (r, t) exp[i', (r, t)]

e' 'A(r t)-e' "'
where v is the "carrier frequency" of the inci-
dent radiation, a, (r, t) is a. r.eal "form factor"
governing the angular distribution of radiation
from the ith scatterer, and y, (r, t) is a phase fac-
tor depending on its position at time t with re-
spect to the observation point r. We assume
(i) that a, and y,. are ra.ndom variables which are
statistically independent from each other and
from a& and yz for all it j, and (ii} that the scat-
terers introduce path differences exceeding the
wavelength of the radiation so that the y,. can be
regarded as being uniformly distributed over 2m

(strong scattering). Equation (1) then describes
a random walk of a finite number of steps of fluc-
tuating lengths in the complex E plane. The dis-
tribution of the envelope A(r, t) can be determined
by Fourier transformation of the characteristic
function

g(y) = ye ~ ~'E/(E) d~E—:(e i ~"E) (2)

as particles in suspension" or seed particles
in fluid flows' but also continuous systems of the
deep phase screen type such as very rough sur-
faces or thin layers of highly turbulent media
which contain focusing elements. "When N is
large the complex field E(r, t) is Gaussian dis-
tributed by virtue of the central limit theorem;
the envelope 5'I is then Bayleigh distributed and
the intensity I = IEI' has a negative exponential
distribution. In many cases of practical interest,
however, + is not large and departures from
Gaussian statistics are found. ' One may deliber-
ately choose to work in the "non-Gaussian re-
gime, " as in some laser-light- scattering experi-
ments, or it may be unavoidable, as in the case
of a high-resolution microwave radar operating
over a rough sea.' Previously we suggested that
a class of distributions based on the modified
Bessel functions'„might prove useful in this lat-
ter context but data taken recently in a wide vari-
ety of experiments sugge st that the se di stributions
may be more generally applicable in non-Gaus-
sian situations. In this Letter, after introducing
E distributions we present further experimental
evidence in support of this conjecture. We then
show that & distributions can be obtained by ap-
plying a special limit prcedure in the random-
walk problem.

We write the scattered field

After angular integration we get

C(~) = (Z, (~A)) = P,(~a))", (3)

lim (8,(& a/v N))" = exp(- X'(a') /4), (4)

leading to a Rayleigh distribution for A, indepen-
dent of the statistics of the (a, j. This is just the
central-limit theorem result expressing the fact
that the real and imaginary parts of the complex
field [Eq. (1)] are independent Gaussian variables
for large N Not. e that when the fa, j are them-
selves Rayleigh distributed then so too is the
envelope A even fox finite N Thi.s is because the
Rayleigh distribution is stable or a fixed point
with respect to the convolution, Eq. (3).'

In general, however, the distribution defined
by Eq. (3) is not Rayleigh for finite N and may
well describe a signal which fluctuates more wild-
ly than the noiselike behavior obtained for large

¹ This situation of enhanced fluctuations is ex-
pected to obtain when the region of scattering me-
dium contributing to the received field is compar-
able to or smaller than the largest structure
present, with hl denoting the number of scattering
centers within this region. Complete solution of
the problem would then involve (i) calculating the
probability distributionP(a) for the situation of
interest, and (ii) evaluating Eq. (3) and inverting
Eq. (2). While (i) is in principle possible, if dif-
ficult, it appears that (ii) is not possible analyti-
cally for arbitrary p(a). In searching for a model
for non-Gaussian statistics we discovered a class
of distributions with attractive properties based
on the modified Bessel functions K, for which
Eq. (3) can be inverted analytically. ' We take

2b ba V+'
P (a) = — K,(ba), v & —1.

Then, from Eq. (3), envelope A is also K-distrib-
uted with increased index

v~ = (v + l)N —1. (6)

Although these two-parameter distributions are
infinitely divisible with respect to the convolution,
Eq. (3), they are not stable, approaching a Ray-

where (.) here indicate averages over the distribu-
tion p(a) of fluctuating amplitude factors. (Distri-
butions satisfying this equation are, by definition,
infinitely divisible. ')

The limiting distribution for N-~ may be ob-
tained in a simple way by scaling the amplitudes
(a, j with v'N so that the mean intensity (A ) =N(a')
remains finite:
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leigh distribution as N becomes large, i.e. , as
v„-~. Their moments always lie between those
of a Hayleigh distribution and those of a, log-nor-
mal distribution with the same mean and vari-
ance. '

Although the K distributions are clearly interest-
ing from a mathematical point of view and possi-
bly useful as a model for non-Gaussian statistics,
no real physical basis has so far been given for
the choice of p(a) made in the preceding discus-
sion. It was somewhat to our surprise, there-
fore, to find experimentally that the radiation
scattered by a. variety of systems is K-distributed
to a, significant degree of accuracy. These exper-
iments include the scattering of laser light by
(i) a turbulent layer of nematic liquid crystal, '"
(ii) a turbulent layer of air," (iii) a turbulent lay-
er of water, "and (iv) an extended region of at-
mospheric turbulence, " (v) the scattering of star-
light by the upper atmosphere" (stellar scintilla-
tion), and (vi) the scattering of microwave radia-
tion by a small area of rough sea." Only in cas-
es (ii) and (vi) have the experimental data been
compared with K distributions in the open litera-
ture. In the limited space available here we pre-
sent a reanalysis of old data for case (i) which
were previously analyzed in terms of a facet mod-
el for the wave front emerging from the scatter-
ing medium. A thin layer of liquid crystal was
driven into a, turbulent state by applying an elec-
tric field (dynamic scattering). The typical size
of a turbulent eddy was a few microns, compara-
ble to the (adjustable) size of a focused laser
beam so that the non-Gaussian (or non-Rayleigh)
situation was easily achieved. In Fig. -l we com-
pare the moments (I")/(I)" of the experimental in-
tensity probability distributions with those of K
distributions having the same mean and variance.
There is almost perfect agreement to within ex-
perimental error for a range of second moments
from - 2 (the Gaussian value) to —10. It should
be emphasized that an attractive feature of distri-
butions based on Eq. (1) is their built-in scaling
with number of scatterers N [through Eq. (6) for
K distributions] and therefore with the illuminat-
ed volume of scattering medium. This scaling
was accurately verified in the liquid crystal ex-
periments by varying the size of the laser spot. "

The applicability of K distributions to such a
wide range of experimental data led us to search
for a limiting process leading to them rather than
to the Rayleigh distribtuion as in Eq. (4). We find

that this can be achieved by introducing number
fluctuations into the random walk problem. Sup-
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FlG. 1. Higher normalized moments, (I")/(I)", of
the intensity distribution of light dynamically scat-
tered by a liquid crystal as a function of the normalized
second moment, (I')/(I)', forn=3, 4, and 5. The
solid lines are the values for K distributions; the
dashed lines are the predictions of the old "facet"
model.

pose that in a, two-dimensional random walk of
the type of Eq. (1) the number Ã of contributions
to the scattered field is fluctuating in a way which
is statistically independent from the (a,.J. The
convolution, Eq. (3), may then be averaged over
the distribution of ¹ For example, if N is Pois-
son-distributed we obtain"'

(J,(AA)) = exp(17[( J(A. a)) —1]j.
If we now define a limiting process for large N
in which a is again scaled by N"' we obtain

lim exp] Ã [(J0(Aa N ' 2)) —1]j= exp(- & (a )/4)
N~~

leading to a Rayleigh distribution for A, as before.
This is consistent with the fact that the normal-
ized variance of a Poisson distribution 0-A ' so
that the problem reduces to the fixed 1V case as

However, consider the negative binomial
distribution

The normalized variance of this distribution is
given by

(8)

which remains finite as A-~. Summing the con-
volution, Eq. (3), over this distribution and seal-
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ing a with N"' gives

(Jo(&A)) = 1+ — (J~(AalV '~2))
1+v 1+v

and clearly,

y2(g2) 1 (&+ 1)
lim(Z, (XA)) = 1+
N~ 00 4 1+v (10)

A straightforward Bessel transform of Eq. (10)
shows that A is K-distributed and we have achieved
our objective. Note that the result, Eq. (10), is
independent of the statistics of the (a,.) as in the
central limit theorem.

Thus we have established a new limit theorem
which predicts that the amplitude of the resultant
of a bvo-dimensional random walk, with step
number varying according to Eq. (7), will be K-
distributed as the mean number of steps becomes
large. It now remains to justify the assumption
of negative binomial number fluctuations [Eq. (7)]
as a sensible model for the scattering systems
studied. We discuss this using plausibility rather
than rigorous arguments. We note that only for
a Poisson distribution are "events" uncorrelated;
in this case an event is the presence of a scat-
terer. For a negative binomial. distribution the
events are correlated and will occur in "bunches. "
(The distribution is often used to model variable-
mean Poisson processes. ) This description is
not unreasonable for a rough sea surface where
the scatterers may be viewed as collections of
specular points associated with small wavelets
carried on the top of a larger scale structure.
Similarly there is a large range of scale sizes
in a turbulent medium where a large eddy may
break down into a number of smaller ones. The
negative binomial distribution is, in fact, m. ex-
act stationary solution for the population in a
simple birth-death-immigration process" which
could well describe the evolution of eddies in a
defined region of a turbulent medium.

Obviously fluctuations in the number of scat-
tering centers will only be correlated over dis-
tances less than the maximum length scale in the
medium (the outer scale of turbulence). Restrict-
ing ourselves to a thin scattering layer for sim-
plicity, we see that the arguments of the previous
paragraph only apply directly when the area A, of
scattering medium seen by the detector is small-
er than or comparable to the maximum correla-
tion area A, . However, if A, »A„ then the field

at the detector will be the sum of the essentially
independent fields scattered by each elemental
areaA, Thus the medium may be regarded as
being made up of a number of independent "super-
scatterers" of area -A, each of which consists
of correlated groups of lesser scatterers. By the
arguments developed above, the amplitude scat-
tered by a single superscatterer will be K-dis-
tributed. Therefore this approach, if correct,
justifies the use of Eq. (1) with p(a) given by aK
distribution and with N-A, /A, as the number of
superscatterers. In this picture the amplitude A

will be K-distributed for values of A, /A, ranging
from «1 to»1 (provided A,"' is much less than
the smallest correlation length in the medium—the inner scale of turbulence. )

It is worth noting that, although our derivation
of the K distributions is based on a two-dimen-
sional random walk, Eq. (1), these are also ob-
tained by the same argument in the one-dimen-
sional case

if the steps x,. can be either positive or negative.
On the other hand, if the steps are restricted to
be positive then the number distribution (7) leads
to the result

lim(e "x)=[1—iX(x)] '"'"
N~~

corresponding to a gamma, distribution (which al-
so possesses the property of infinite divisibility" ).
If we identify X and x; with intensities then (11)
gives the limit distribution for an incoherent scat-
tering experiment in which intensities are addi-
tive, rather than fields as in Eq. (1). Experi-
ments of this type together with measurements of
other properties of the scattered fi.eld such as
the temporal autocorrelation function of the inten-
sity could possibly be used to test the ideas we
have presented and may also provide a means for
determining the outer scale of turbulence.

In conclusion, we would like to emphasize that
limit distributions in the random walk yroblem
constitute an entire field of study in themselves'
and that, inevitably, the simple analysis present-
ed here has been obtained at the expense of math-
ematical rigor. We have demonstrated, however,
that number fluctuations may be important in
this context, and have established a need to inves-
tigate their role further. This may shed new

light on the problems of turbulence and critical
phenomena in view of the increasing use in this
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area of research of renormalization group tech-
niques which are intimately related to limit theo-
rems in probability theory".
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A small-diameter, low-energy, test electron beam is injected along Bo into a collision-
less plasma in which current-driven ion sound turbulence can be generated. 'The scatter-
ing of the test particles across Bo due to fluctuating fields E j Bo gives a direct measur e
for the turbulent spatial diffusion coefficient B,~. Investigation of the velocity-space dif-
fusion shows strong pitch-angle scattering effects. No significant anomalous resistivity
is observed.

Although ion sound turbulence has been studied
by many authors' the direct interplay of particles
and waves has rarely been observed directly. In
this Letter we describe an experiment where test
particles (electrons) are injected into a turbulent
plasma and subsequently followed in real and
velocity space. Diffusion coefficients and resis-
tivity are obtained in a case where the turbulence
spectrum w(k) has been carefully analyzed. We
show that Bohm-like diffusion arises from ran-
dom B. +Bp drifts due to perpendicular-wave
electric fields, E,

The experiment is performed in a large, mag-
netized, nearly collisionless discharge plasma'
of parameters n, =10' cm ', T, =10T,. =2 eV, Bp
=130 G, v,./&e~,. =10 ', Ar and He. As is sche-
matically shown in Fig. 1(a), the uniformly mag-
netized plasma column is divided by a fine wire

mesh into two regions: the experimental section
in which a field-aligned current is drawn to an end
anode, and the source region of higher density
which supplies the electrons to maintain the cur-
rent. Aside from the use of Langmuir probes and
resonance cones, the diagnostics include movable
rf probes to perform three-dimensional cross-
correlation measurements, and a test electron-
beam source which projects a low-energy (1-10
eV), low-density (n, /n, «1), pencil beam (2 mm')
along B,. In order to distinguish the test elec-
trons from the background electrons the beam is
weakly velocity modulated (f =50 kHz «f~,.) and
resonantly detected, and its relative distribution
is displayed versus probe voltage referenced to
ground.

By drawing a field-aligned electron current to
the end anode, ion acoustic waves are driven un-
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