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A variational version of the cellular method is developed to calculate the electronic
structure of molecules and crystals. Because of the simplicity of the secular equation,
the method is easily implemented. Preliminary calculations on the hydrogen molecular
ion suggest that it is also accurate and of fast convergence.

The multiple-scattering method has been ap-
plied successfully to a wide range of solids, mo-
lecules, and molecular clusters. " However,
there are some molecular geometries where the
muffin-tin potential has to be improved consider-
ably if one wants to obtain an electronic structure
with a reasonable degree of physical realism. '
The unsatisfactory features of the muffin-tin ap-
proximation applied to open structures are al-
ready known from previous calculations of elec-
tronic structure of solids. 4 For open structures,
the muffin-tin approximation is poor because of
the large volume where the potential is constant.
To circumvent this limitation, it is becoming
common practice to overlap the spheres circum-
scribing the atoms, ' thus minimizing the bad ef-
fects of a constant potential in a much extended
region. This procedure improves the results con-
siderably, as examplified by the case of the ion

H, ' to be discussed below. The extension of the
multiple-scattering method to non-muffin-tin po-
tentials, that has been tried by some authors, is
difficult and costly to implement. ' In preference
to the methods which deal with muffin-tin poten-
tials, we suggt. st in this Letter a new approach
to the problem of finding the one-electron solu-
tions of the Schrodinger equation for molecules
and crystals. Our starting point goes back to the
Wigner-Seitz-Slater cellular method, ' where the
solution of the boundary condition problem is re-

formulated by us as a variational principle. A

critical test of the model is made by earring out
preliminary calculations of the hydrogen molec-
ular ion H, '. As will be shortly seen, one im-
portant asset of the present method is the elimi-
nation of the constant-potential region of the mul-
tiple-scattering method. In this respect, the
good features of the overlapping-spheres model
can be also expected in the present case.

The present method has a resemblance to the
one proposed by Antoci and Nardelli. ' Their
method and ours have a common starting point,
which is a variational expression for the energy
eigenvalue. ' While Antoci and Nardelli use spher-
ical cells centered at the nuclei, our cells can
have any shape, which is an asset for open struc-
tures. On the other hand, in the interatomic re-
gion, Antoci and Nardelli expand the wave func-
tion in terms of functions which are regular at
the origin and at infinity. Thus, in the interatom-
ic region, the wave function is not an exact solu-
tion of the Schrodinger equation for the energy
eigenvalue. In this respect, the method of Antoci
and Nardelli is an extension for molecul. es of the
augmented-plane-wave method for crystals, and
one cannot expect rapidly converging wave func-
tions. The method we present below is different-
ly motivated: We attempt to formulate the cellu-
lar method in a variational way. Thus we add to
the flexibility of the cellular method a much fast-
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er convergence.
According to the original idea of the cellular

method, we start by decomposing the molecular
or crystal space into cells, one surrounding each
atom or interstitial region. In the simplest form
of the cellular method, the true potential is ap-

proximated, within each cell, by its spherical.
average with respect to the center of the cell.
In this Letter we will confine our attention to
spherical cellular potentials. By solving a cen-
tral-field problem within the cell i, we generate
a trial function (, , to be used in a fully variation-
al expression' for the energy e:

(Q. fdic( *$.)c =Q fdQ[Vg. * v(. +( *V.g.]

+.Z -fdS [(4;* 4„-*)(8„4; 8„—0,)+(0;- 4;)(8„0;*-8.4;*)],
Spy

where we are adding volume integrals in each cell i and surface integrals in each boundary S,.; between
cells i and j. In Eq. (1), V is the potential and 8„$, means the normal derivative to the cell surface
S... outwards from the cell i Th.us, at S,, , 8„(; and 8„(,have opposite directions. Equation (1) can be
written as

(2;f«4; 0;)~ =2;fdic 0,*[ &'+-V]4;+.2,-fdS(4; 4,)—(8.4;*-8„0;*)
+~+ fdS($;*+/ *)( 8(,+8„(;). (2)

e is always real for any trial wave function; thus we can vary P,.* to obtain the conditions for e to be
stationary:

[ V+ V]-(,. = 6P, ,

e, l~, , =(;Is.. . (3a)

which imply that the wave function and its normal derivative have to be continuous through the cell
boundaries. To proceed with the derivation of the secular equation, the usual spherical harmonic rep-
resentation of the trial function (, is assumed:

&; - li» =K~A
& ~ f;~(r)

(3b)

(4)

where

f, ~(r) =R,"(r,)Y~(r",),
where A. = (I,m) is the spherical harmonic angular momentum index. The functions R,"(~) are the solu-
tions of the radial Schrodinger equation for energy e, and potential V(r) which are regular at the origin
or decrease exponentially at infinity. Y~(r, ) are spherical harmonics and the coefficients A,.~ are to
be determined. If the trial function is a propagating state in periodic lattice, the coefficients A,. & in
different cells are related by the Bloch theorem. The variation of the trial function (,* in Eq. (2), as-
suming the representation given by Eq. (4), leads to the following secular equation:

where H is a matrix whose elements are

& &Il Hl~&'&=( I ;8;)fdS;; [8„f;x-*f;g+f, x'8. f; g].

This is a Hermitian square matrix where the di-
agonal elements are all nulls.

As a test of the method we consider the hydro-
gen molecular ion H,'. This molecular geometry
can be partitioned into cells, by first considering

t a sphere of radius B, enclosing the constituent
nuclei and centered at the middle point between
them. The outside region of this sphere defines
a cell that extends out to infinity (outer cell). The
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inside region of this sphere can be divided in two
equivalent cells by the inscribed portion of a
plane perpendicular to the line joining the nuclei
through the middle point between them (atomic
cells). The averaged cellular potentials within
these cells can be represented, in Rydberg units,
as

v, (r) = —2/~ —2/R

within the atomic cells, and

v, (~)=-4/r, ~&a„

(7a)

(7b)

in the outer cell. R is the internuclear distance.
In general R, will be an adjustable parameter.
In order to improve the physical realism of our
potential model we choose R, in a way that the
averaged potential is continuous at the intersec-
tion of the outer sphere with the plane dividing
the atomic cells. We generate the functions
R, 'o(x) by numerically integrating the radial
Schrodinger equation. For each trial value e„
the outward and inward integrations are per-
formed, respectively, for the potentials V, and

V,. The surface integrations in Eg. (6) are per-
formed according to the usual procedure of nu-
merical integration, where the integrand is eval-
uated at a finite number of points and summed
with appropriate weight factors. The secular ma-
trix is parametrized in terms of e,. The one-
electron energies are given by the zeros of the
associated determinant.

In Table I is shown a convergence study of the
log level of H,

'
(R =2.0 a.u. ) as function of the

number of terms in the cellular expansion and

the number of points used to perform the numeri-
cal surface integrations at the plane and at the
hemispheres. The cellular representation in-
cludes, in each cell, spherical harmonics whose
maximum angular momentum is l

Table I has two interesting features: First,
our variational version of the cellular method
shows fast convergence with respect to E. For

„=2 the solution is already convergent within
tenths of eV, being fully convergent for E „=4.
Secondly, for a fixed value of E „, the solution
converges if enough points are used for the sur-
face integrations. %hen this number of points is
reached, the solution is no longer sensitive to the
number and location of the points on the cell sur-
faces. It is well known that the Slater cellular
method, based on exact point matching, is an ac-
curate technique to determine one-electron eigen-
states in crystals. ' However, many authors have
pointed out that the method is not practical, "
since too high a value of E, is needed in the cel-
lular expansion to ensure a reasonable conver-
gence. If the matching points sample only limited
portions of the cell surfaces, as originally sug-
gested, it is clear that the eigensolutions cannot
be derived from a variational principle. " Energy
eigenvalues not determined variationally demand
wave functions with high-order spherical harmon-
ics. On the other hand, Table I shows that, once
the integrations in expression (6) are performed
in an accurate way, the energy converges even
for wave functions with just a few spherical har-
monics.

In Fig. 1 we show the results of our calculation

TABLE I. Convergence of the lowest energy level, E f(yg, of H2+ for the
equilibrium internuclear distance R = 2.0 a.u. l~,„is the maximum spher-
ical harmonic angular momentum in the cellular expansion. Values are in
Rydbergs. "Points" is the number of points used for numerical integra-
tion in the hemispheres and in the plane.

1
2
3

5
7
9

12
15
20

—1.900
—1.900
—1.900
—1.900
—1.900
—1.900
—1.900
—1.900
—1.900
—1.900

—2.105
—2.097
—2.084
—2.080
—2.079
—2,078
—2.07V

—2.077
—2.077
—2,077

—2.182
—2.150
—2.142
—2.139
—2.136
—2.135
—2.134
—2.134
—2.134

—2.438
—2.167
—2.141
—2.140
—2,142
—2.143
—2.144
—2.145
—2,145

—2,240
—2.181
—2.167
—2.159
—2.157
—2.155
—2.155
—2,155

—2.989
—2.527
—2.253
—2.191
—2.155
—2.155
—2.155
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mainly to the failure of the muffin-tin potential
approximation.

To conclude we point out that the proposed vari-
ational cellular method is suitable to deal with
complicated structures, since no assumption is
made a Priori about the shape of the cells.
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method. This work was supported by the Funda-
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Paulo, Brazil.
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FIG. 1. Ground-state energy of H2+ as a function of
the internuclear distance. The multiple-scattering
calculation (full circle), the overlapping-spheres cal-
culation (triangle), and the results of the cellular
method (empty circles) are compared with the exact
solution (solid curve).

for the ground-state energy of H, ', as a function
of the internuclear distance (empty circles). The
results of a multiple-scattering calculation"
(full circle), an overlapping-sphere (OS) calcula-
tion" (triangle), and the exact solution' (solid
curve) are also shown. For small internuclear
distance the results of our variational cellular
method are in perfect agreement with the exact
solution. In this latter case, the averaged spher-
ical potential within the atomic cells is a good ap-
proximation, since the cells have small size.
Other authors, who have been applying different
versions of the cellular method to crystals, have
already pointed out the accuracy of the method
for close-packed structures. " The arrow in Fig.
1 shows the exact equilibrium internuclear dis-
tance, which is in perfect agreement with our re-
sult. For internuclear distances greater than
1.5 a.u. , our results agree with the exact solu-
tions within 0.05 Py. Our results presented here
could be improved still further by going beyond
the standard spherically averaged cellular poten-
tial model. ~ " The deviation of the multiple-
scattering result from the exact solution is due
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