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tively, by forcing coefficients a,B„-a,B„a,B„
and -a,B, when inserted into (13) to yield a curve
8 in Fig. 2 within experimental uncertainty of
measured curve B. The polarization distribution
obtained from the determined coefficients, assum-
ing a, = a, = a, = 2a„ is the distribution b in the
inset of Fig. 1.

The samples discussed in this Letter were
chosen to illustrate the theory. Other copolymer
samples and homopolymer (polyvinylidene fluo-
ride) samples under different poling conditions
can exhibit nearly uniform polarization. ' In such
cases, the response is nearly steplike and B„/Bo
=0 for all n.

The present work indicates the source of ambi-
guity in the Collins's deconvolution procedure.
The thermal pulse data (under conditions similar
to those in Collins's experiments) yield no more
than ten or fifteen coefficients [based on N =(T,/
f„)' 'j. Collins's electrical analog sought to ob-
tain discrete distributions characterized by
twenty adjustable parameters. Any discrete dis-
tribution (of which there are many) consistent
with the determinable Fourier coefficients would

reproduce the measured transients within the
noise in the data.
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A scaling theory is used to show that for temperatures T«U, the properties of the
asymmetric Anderson model (U» I Eq I, LQ are universal functions of the scaling invar-
lants 6 and Eg+ = Fg + (6/vr) ln(W, /6), where Wo is the conduction electron bandwidth or
U, whichever is smaller. Crossovers between various regimes of simple behavior as
the temperature changes are described, l E&*l & 6 is identified as the criterion for a
"mixed-valence" ground state, where the susceptibility =6 '. For —Ez*»4, there is
a local-moment regime with a Kondo temperature TK = 6 exp(m. E„*/2A).

There has been recent interest in the asymmet-
ric Anderson model' (U» IE& I, &) in connection
with the theory of "mixed-valence" rare-earth
materials. ' ' The numerical renormalization-
group technique pioneered by Wilson' allows the
thermodynamic properties to be calculated, ' but
the parameter space is large. Analytic results
can clarify the dependence of physical properties
on the model parameters, and provide a frame-
work for the numerical exploration of the "cross-
overs" between limits describable by a simple
effective Hamiltonian. This Letter reports a
scaling property of the asymmetric Anderson

model; that is, universality of model properties
as functions of the scaling invariants & and E&*

=Eq+ (&/n)1n()P'0/&'), where lt'o= U or the conduc-
tion electron bandwidth, whichever is smaller.
The scaling equations also allow a simple descrip-
tion of the temperature dependence of physical
properties.

The (nondegenerate) Anderson model is char-
acterized by the parameters Ez, U, and h(u'),
and is

H =H +E+ ng +Unpin')+Qp~V~g cg tcg +H.c.,
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b (&u) is essentially characterized by & [ =&(0)],
a,nd a bandwidth W where &(~) = & for

~
cu~ «W

and &(~)= 0 for l~ I » W. The limit U»& may be
investigated by a perturbation expansion in ~. If
~» U the expansion is independent of W, but for
U» W» IE~ I, logarithmic dependence on Wap-
pears in each order,' for W» &, the leading terms
in the expansion for the impurity susceptibility
are

1 4 T
g= —

&
1+

&
ln

W
+.. . (T»~E„~), (2)

1 2& 1 2Z

(-E~ » ~) ~ (4)

These expansions are ultraviolet divergent as~-~; however, for ~» U, they are given by
equivalent expressions where a quantity of order
U replaces W. (The effects of processes involv-
ing high-energy conduction-band states cancel
exactly in the noninteracting limit U = 0; this can-
cellation remains for conduction band energies
» U.) Perturbation theory indicates that states
with energies in the range IE~ I, T « l~ I«U play
an important role in low-energy processes as
virtually excited intermediate states.

Logarithmic dependence on a high-energy cut-
off is the hallmark of a, scaling property, where
the physics at low energies depends not on the
"bare" parameters, but on renormalized param-
eters that take into account the effect of high-en-
ergy intermediate states. Such quantities may be
identified as the invariants of a, scaLing transfor
mation: If the cutoff W is reduced to W- IdWI by
integrating out states with energies W- IdWI& l&a I

&W, the bare parameters are renormalized, but
the low-energy physics is unchanged, and thus
depends on the scaling innaxiants. Of course,
such a truncation of the conduction band not only
renormalizes the bare parameters, but also gen-
erates both new couplings and retardation. ' How-

ever, retardation should not affect processes
with energies I t«~, and the new couplings
should be "irrelevant" in that they vanish in the
limit W- ~. In this limit, a truncation procedure
that generates a new effective Hamiltonian with
renormalized parameters does so as a conse-
quence of an intrinsic scaling property of the
model.

The scaling equations may be derived in a man-

fo&=fo&- Z
I I

"' c,.)0&,
k k, o ~k + y 0

IV„,I'

k=k'+ ~k + p

iv,„I'

, ,+ t~, I+E, -E, '

The scaling equation for E& (= E, Eo) is t-hus

1 " 2~&'(- cu) rob. '(~)
d ln& 7t 0 +E& u -E& (9)

Since &'(v)= 0 unless I+I= W, (9) simplifies to

dE~/dlnW= —&(0)/w+ O(Egb(W)/W). (10)

The transformation of &(0) is found from the re-
normalization of t/'kd when &k =0:

V~ = (Di c„.ai lc&((Oi 0&(lo ) lo&)-",
d&(0)/d lnW=O(&{0)&(W)/W).

(11)

(12)

In the limit W-~, the right-hand side of (12) van-
ishes, and &(0) is unrenormalized; however, (10)
is nontrivial, and E& is strongly renormalized by
sca, ling. This is because the state I 0) can hy-
bridize with both chill&& and c~~ I lk), while (as
l2) is decoupled) I lv& only mixes with c„fl0&;

Ep is thus reduced by twice as much as E j and
E& rises as scaling proceeds. This feature is ab-
sent if ~» U; a similar derivation in that case
produces no nontrivial scaling equations. It
would be pointless to be more precise about the
terms O(&(W)/W); not only are they "irrelevant"
(when they are significant, so are new couplings
a.nd retardation), but they depend on the detailed
form of &(~) when ku I= W note that the nontrivi-
al term in {10)involves &(0), independent of its

ner reminiscent of Anderson's "poor man' s" treat-
ment' of the Kondo problem. Divide ~(~) into
&((1+&)&')—&~&'(&u), where & is a positive in-
finitesimal, and b, '(&u) is the derivative. The pos-
itive quantity -&&a&'(u&) represents the contribu-
tion to b. (~) from high-energy states which are to
be integrated out, preserving the form of b, (~),
but changing its scale. If U&) W&) I,Eq I, hybridi-
zation with these states renormalizes the d-or-
bital states ID& and I la&, but the state 12& is de-
coupled from the conduction band. Particle states
in the cutoff region are labeled k', hole states k;
to lowest order in X (= —6 lnW) the transformation
is

417



VOLUME 40, NUMBER 6 PHYSICAL REVIEW LETTERS 6 FEBRUARY 1978

form in the cutoff region. Essentially equivalent
equations have recently been independently re-
ported by Jefferson, ' though they are phrased in
somewhat different notation, and include "irrele-
vant" terms derived using a particular cutoff pre-
scription.

The scaling invariant obtained by integrating
(10) is E~* = E, + ( d/m) In(W, /&), where E& and W,
are the initial or "bare" values. ' (If initially W

» U, renormalization of E& only begins when ~
has been scaled down to W= Wo= U. ) As W is re-
duced, Ed, rises along-the scaling trajectory

E,(W) =E„*—(&/m) In(W/&). (13)

The scaling trajectories (13) are plotted in Fig. 1.
The scaling laws were derived assuming that

particle states in the cutoff were empty and hole
states full. For R"& &, the scaling laws change, '
and further scaling produces no renormalization
of E&. For»», the physics is essentially atom-
ic, and is thus described by a free orbital with a
temperature-dependent level E&(T), given by set-
ting W= T in (13).

For E&*»&, scaling stops when W= E„(W)= T*
(»&), where

T* ~ (d/~) ln(nT*/~) =E„*; (14)

o. [~ O(1)] is a universal number characteristic of
the crossover. " Reducing ~ below &* produces
no further renormalization' since the states I lo)
become decoupled from low-energy processes.
At temperatures below &*, charge fluctuations
are frozen out, (nz) = 0, and the impurity suscep-

tibility is given by perturbation theory:

2 exp(- T*/T)
4T 1y2ezp(- T*/T) 2vrT*' ' (15)

TX ~~d 0
1/g-

1/6 - Ed &&d

'/s

= ~ nd 2/3~ nd

U T

d —2t3

I4 iii

Below some temperature TF „, (15) is dominated

by the second, temperature-independent term,
characteristic of a Fermi liquid. The effective
Curie constant &p is shown schematically as a
function of temperature in Fig. 2(a). It is a meas-
ure of the effective degeneracy of the impurity
orbital, and rises from -', (fourfold degeneracy)
for»&U, to ~ (triplet) for U» T» T*; below
T* it falls to zero (singlet), becoming linear in
the Fermi-liquid regime below 7 F1„.

When IE,*I~ &, the orbital retains effective
triplet degeneracy till the crossover temperature
T=& when irrelevent terms grow and scaling
breaks down. The system goes directly into a
Fermi-liquid regime; (nz) remains substantially
nonintegral at T =0, and this regime may be de-
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FIQ, ]. Scaling trajectories [Eq. (13)l, ending at
crossovers (broken lines) to a singlet regime (E& & 8')
for E~*»6, to a doublet local-moment regime (Ed
&- W) for Ez*« —6, and to a mixed-valence Fermi-
liquid regime for I Ez*l & A.

I

U

I

0 Tg h, T T

FIG. 2. Schematic temperature dependence of the
effective Curie constant T g for (a) E&*»0, (b) curves
l~ ll~ ill~ Eg*= &, 0, -&, and (c) Eq*&& —&, showing
crossovers between atomic regimes where the effective
degeneracy is fourfold (T p = -'), triplet (T y = -'), doub-
let (T y = -'), and singlet (T y = 0). At low tempera-
tures there is a crossover to a Fermi-liquid regime
where T g is linear in T. Note that though the temper-
ature scale is drawn linearly to emphasize this Fermi-
liquid behavior, TK, 6, T, and T indicate scales of
temperature which may differ by many orders of mag-
nitude,
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scrib d as one of "mixed valence. " (Note that
IE,*I&6 is the criterion for mixed valence, not
IE, I& 6 as commonly supposed' '; depending on
~„Eq*may be arbitrarily larger than Ed,.) For
T«, X will be of the order of the inverse of the
crossover temperature (i.e. , y= & ' as predicted
by Varma and Yafet') Since this is a crossover
region between two simple limits ("integral val-
ence"), low-temperature properties will be sen-
sitive though universal~unctions of E„*/&.

When -E&*»& [Fig. 2(c)], renormalization
stops when the state 10) is decoupled at ~= —E„(&)
= T (»&), where

(16)

a is analogous to n in (14)." For T &T, charge
fluctuations are frozen out leaving (nd) = 1, and
a local moment. The Schrieffer-Wolff transfor-
mation" to a Kondo model is then valid, giving
(Zp)' = —2&/wT, O' = T. Below a Kondo temper
ature TK, given by' D(IJpl)~' exp( /1Jp), the local
moment is quenched, leaving a Fermi liquid.
From (16), TK is of order exp(PEP/2&), hence,
&K«&; in terms of bare parameters, &K
= (&u, 6)'~'exp(wE„/2&), in agreement with a form
obtained recently by perturbation theory. ".

An analytic scaling theory is able to identify
universality and scaling invariants, but only qual-
itatively describes the crossovers; this is where
Wilson's numerical technique" comes into its
own. The main candidate for a detailed numeri-
cal study is the low-temperature mixed-valence
region, where, when energies are expressed in
units of &, the susceptibility, linear specific
heat coefficient, and (n&) should smoothly change
from their Kondo to E&*» & values as universal
functions of E„*/&.
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