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New Symmetry in the sd Boson Model of Nuclei: The Group O(6)
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%e suggest that, within the framework of the interacting-boson model, the group 0(6)
of orthogonal transformations in six dimensions may be useful in classifying nuclear
spectra at the end of major shells. We derive analytic expressions for the energy levels
and electromagnetic transition rates in this limit.

Recently we have proposed' a description of
even-even nuclei in terms of a system of interact-
ing bosons, able to occupy two levels, one with
angular momentum L =0 (called s) and another
with angular momentum L = 2 (called d). These
bosons generate a SU(6) symmetry spa. nned by
the 1+ 5 components of the one-boson states s t~0)
and d „t )0) . We have also indicated that whenever
the Hamiltonian H can be written in terms of the
generators of subgroups G C SU(6) alone, analytic
solutions to the eigenvalue problem for H can be
found and a dynamical symmetry in the sense of
Gell-Mann' arises. We have so far considered
two cases, (i) G =—SU(5) and (ii) G —=SU(3), and
have shown that these correspond approximately
to the anharmonic vibrator and axial rotor limits
of the classical geometrical description. Several
cases of both dynamical symmetries are known, '4
the first kind, SU(5), being found in nuclei at the
beginning of major shells and the second kind,
SU(3), being found in nuclei in the middle of ma-
jor shells.

In this Letter we want to point out that a third
subgroup, G—=0(6), may be useful in describing
nuclei at the end of major shells. Possible ex-
perimental evidence for this symmetry at the end
of the neutron shell 82-126 is given in Cizewski
et al. ,

' while more complete evidence, including
the 50-82 neutron shell (Ba and Xe isotopes),
will be given in a forthcoming longer paper.
Here we briefly discuss the properties of this
group. ' We begin by listing the fifteen generators
of 0(6), (de)t'& (de) '~, (dies+std)t'l We then
note that five extra labels are needed to classify
the totally symmetric irreducible representations
[N] of SU(6) when the group chain SU(6) 30(6)
gO(5)30(3) is used. These are as follows: a
quantum number 0 which characterizes the totally
symmetric irreducible representations of 0(6),

where

o=N, N-2, . . . , 0 or 1for

tV=even or A'=odd;

a quantum number 7 which characterizes the to-
tally symmetric irreducible representations of
0(5), where

0', g —1, . . . , 0 (2)

a quantum number vz, which counts boson triplets
coupled to zero angular momentum; and finally
the total angular momentum L and its Z compo-
nent. The values of L contained in each repre-
sentation (v) of 0(5) are obtained by partitioning
T as

(3)

and taking

L=2A., 2A. -2, . . . , A+ 1, A, . (4)

An expression for the expectation value of the
Hamiltonian H in the state labeled by ~[N]ovvz, LM)
can be obtained in the following way. We first
consider the pairing operator in 0(6) which we
denote by I',. This operator can be written in
terms of three operators,

S =-,'g (-).d td .t

S = 2g (-) d d ——,'ss,

S, = ~Q (d td +d d ~)+ gs~s+sst),

(5)

as P, =S,S . The expectation value of the product
S+S is in turn given by

(S+S ) = So(So -1)—S(S—1), (6)

where S(S-1) is the eigenvalue of the Casimir
operator of the group SU(1, 1) defined by (5). Not-
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given by'ing that

( C,) = —,
'

T( ~+ 3) .S= m+ -',1~+ 6
0 2 4& (7)

Finally we consider the quadratic Casimir opera-
tor of O(3), C,. The expectation value of C, in the
representation L of O(3) is trivially given by

we can write

(P,) = 4(N - a)(N t o+ 4) .
(C,) = L(L+1).

Thus the Hamiltoniari .

H=AP, +BC,+ CC3

(10)
Next we consider the quadratic Casimir operator
of O(5) which we denote by C,. The expectation
value of C, in the representation (7) of O(5) is

is diagonal with eigenvalues

E([N]o7'@~LE)=A &&-'(N —o)(N+ o+ 4)+ B && ,' r(v-+ 3)+ CL(L+ I). (12)

T(~' & = a, (d ts + s td )&'& (13)

This operator satisfies the selection rules ~0= 0 and he= +1, the former being a consequence of the
fact that T(~') is a generator of O(6) and thus cannot couple the different O(6) representations, and the
latter being a consequence of the fact that T~~' can only change one d boson into s or vice versa. U's-

ing (13) we obtain, for example,

B(E2; [N], o=N, v+1, L=2v+2- [N], o=N, 7; L=27) =n, (N- 7)(N+ vt 4)
7+1

(14)

and

B(E2; [N], o=N, 7 + 1, L=2v [N], o=N, v, L= 2v) =ot, )(N- 7)(N+ v+ 4).47+ 2
(15)

It is interesting to compare the ratios

B(E2; 4, +-2,+) 10 (N —1)(N+ 5) 10
B(E2; 2, +-0,+) 7 N(N+4) ~ „7 '

B(E2; 2, +-2, +) 10 (N —1)(N+ 5) 10
B(E2; 2, + 0, +) 7 N(N+4) ~ „7 '
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4 +
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+0— with those obtained in the classical geometrical
description of a rigid triaxial rotor' with y= 30'.
Because the values (16) (as well as others not dis-
cussed here) are identical to those of the rigid
triaxial rotor with y= 30 one may say that the
O(6) limit corresponds in some sense to that case.
There are, however, several differences between
these two descriptions. For example, in the O(6)
limit excited 0+ states occur in a natural way,
while in the triaxial limit they do not. Moreover,

+2—
+0—+4—++2—

I — +6 —,
+

+2—
+0—+0—

+4 —+2—
+2—

0- 0—

FIG. 1. A typical O(6) spectrum for N = 6. The en-
ergy levels are given by Eq. (12) with A = 100 keV,
B = 240 keV, and C = 5 keV. The values in parentheses
are (0., v&).
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The spectrum of Eq. (12) for positive A, B, and C is shown in Fig. 1. It consists of repeating patterns
0+; 2+; 4+, 2+;. . . , corresponding to the various values of 0 =1V, A —2, . . . . Within each pattern there
are several levels corresponding to the values of v, v& and L. The effect of a positive A is that of
placing the representation with o= o,„=N lowest in energy (thus giving maximum population of s bo-
sons to the ground state), while a positive B gives the ordering 0, ', 2, ', 4, ', . . . , and it is related to the
positive value of e = ~„-e, in Ref. 1; finally C & Q places the 2, ' state below the 4, ', etc.

We have also succeeded in constructing closed expressions for E2 transition rates. The derivation is
rather elaborate and we will present it in a forthcoming paper. Here we only quote some results,
which may be useful in analyzing the experimental data. If we insist that the E2 operator be a genera-
tor of O(6), then the most general form of it is
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the electromagnetic transition rates deviate con-
siderably from those of a triaxial rotor when E
is small.

In conclusion, we have suggested a third dynami-
cal symmetry, in addition to SU(5) and SU(3),
which may be useful in describing properties of
nuclei at the end of major shells. We point out,
however, that microscopic calculations in which
both proton and neutron bosons are introduced ex-
plicitly indicate that the Hamiltonian for the com-
bined system may not be invariant under proton-
neutron transformations (the variable called I'
spin in Ref. 8) at the end of major shells. The
O(6) symmetry must then be viewed only as an
approximate symmetry describing the main fea-
tures of the spectra observed at the end of the
major shells, and a detailed comparison with ex-
periment may require the explicit introduction of
proton and neutron degrees of freedom.
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New theoretical predictions for the contribution to elastic photon scattering from atoms
due to the bound atomic electrons are compared with recent experiments and previous
theory. At 1.33 MeV, we resolve the large-angle disagreement for experiments on lead.
For 2.75-MeV photons scattered by lead, we confirm the theoretical Rayleigh scattering
amplitudes of Cornille and Chapdelaine. At 6.84 MeV, we estimate that the form-factor
approximation yielded predictions for the L -shell Bayleigh amplitudes which were too
large by 15'70. For experiments below 100 keV, the form-factor approximation is poor.

We wish to report resolution of discrepancies
between theory and several recent experiments' '
for high-energy elastic photon scattering, achieved
with a new theoretical calculation of the ampli-
tudes for scattering off bound electrons (Rayleigh
scattering). At the same time we are able to
indicate under what circumstances the form-fac-
tor approximation, most commonly used to pre-
dict the Rayleigh-scattering amplitudes, is ade-
quate. Subsequently we will present a more sys-
tematic discussion of the Rayleigh-scattering am-
plitudes for all atomic electrons in the keV and
MeV range for all atomic numbers. Interest in
these Rayleigh amplitudes, important for the de-
termination of absorption coefficients, has also
recently arisen in attempts to observe experimen-
tally the Delbruck-scattering amplitudes, 4 from

its proposed use' as a diagnostic tool for spatial
resolution of densities and temperatures of neu-
trals in plasmas, and because it is a serious
background which cannot be distinguished by en-
ergy discrimination in nuclear fluorescence ex-
periments. '

Our numerical method, expected to be valid for
energies from 1 keV to 10 MeV, follows that of
Brown and co-workers, "which also gives the de-
tails of the basic formalism. We assume that the
atom is represented by noninteracting electrons
in a, screened central potential V resulting from
the charge distribution of the nucleus and the
atomic electrons. Starting with the second-order
S-matrix element of the quantum electrodynamic
interaction of electrons in an external potential
V with radiation, we expand the photon wave func-
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