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With a zero-r~~~e interaction a valence spin-up neutron will not interact with core
spin-up neutrons and hence will not deform them; it will deform spin-down neutrons.
This introduces a spin-quadrupole correlation. An ideal operator for probing this cor-
relation is the M3 operator, since this operator is crudely E2 && M1. The suppression of
the M3 moment in '~O due to this effect, as well as due to the spin dependence of the in-
teraction, is considered.

It has been found by Bertozzi and others' that the M3 part of magnetic scattering in "0 is strongly
suppressed in the region of momentum transfer where it is expected to be strong when a single-par-
ticle picture, of a closed "0 core plus a valence d, ~, neutron, is used. A similar suppression in "V
has been reported by Enomoto. '

It is not the intent of this work to reproduce the momentum transfer dependence of M3 scattering.
Rather, only the zero momentum-transfer limit will be considered. The intention is to show that by
keeping in mind a Hartree-Fock picture to describe a valence particle and a polarized core, the physi-
cal reason for M3 spin suppression becomes transparent.

The spin part of the M3 operator is basically a product of an E2 operator and an Mi operator, This
ties in nicely with a correlation between quadrupole deformation and spin which had been noted by
Zamick, Golin, and Moszkowski (ZGM). '

Let us recall the argument which was concerned with the quadrupole deformation of the core due to
the presence of a valence nucleon, e.g. , "0 core and d, g, nucleon. A simple model of the deformed"0 is one in which all orbits have the same deformation. For example, if one uses harmonic oscilla-
tor wave functions, then all orbits in the core would have the same oscillator length parameters b„= b,

Such a model had indeed been considered by Mottelson. 4 By also assuming that the potential followed
the density he was able to show that the quadrupole moment of the core protons is (Z/A)Q„, &,„„.One
could also express this result in terms of an effective charge

e = Q,.../Q, = Z/a.
But ZGM' pointed out that if the interaction between the valence particle and the core is a zero-range

interaction, then the above "trial solution" must be modified. Let the valence particle be a spin-up
neutron. With a zero-range interaction this valence neutron cannot interact with spin-up neutrons in
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the core. Hence the spin-up neutrons in the core should not be deformed. On the other hand, the va-
lence neutron can interact with spin-down neutrons and so we expect the spin-down neutrons to be de-
formed.

The magnetic multipole moment is

3ll,(ML, p.) = — [L(2L+1)]' 'g r;" '
p, , ( Y~, a)„+ — '- (Yz, l)&

where
2.793 for a proton,
—1.913 for a neutron;

q„t = —,'q, (1+x),
1Q~i= 2qo.

1 for a proton,
0 for a neutron.

In the Hartree-Foek approximation the expecta-
tion value of the one-body operator 5R(ML, 0) is

P,.{ilX,(ML, 0) Ii)

summed over occupied states i. We note that the
M3 operator is basically a quadrupole operator
coupled with the magnetic moment to L = 3, plus
a term with the quadrupole operator coupled with
the orbital angular momentum to L =3.

In this work we will consider mainly the sup-
pression due to spin, not to orbital angular mo-
mentum. We therefore consider the (Y~, o) „~
term. If we use l -s wave functions then the only
part of the operator which contributes is Y p 0,.
Therefore we will work with the operator

M, (3)=(16m/5)' 'g r. 'Y, ~'~o (i) p, .

The value of this operator for the d, g, valence
particle in the M = —, state (this is a pure spin-up
state) is -1.91Q„,&,„„(q,= -[(2j —1)/(2j+ 2) ](r')).

We now consider the core. Since the spin-up
neutrons are not deformed the expectation value
of the M, (3) operator is zero. I introduce the
notation Q t, Q„~ and Q, ~ for the quadrupole mo-
ments of the core particles —protons spin up,
protons spin down, and neutrons spin down. The
value of the M, (3) operator in the core is then

(Q i-Q~&)2 79+1 91q.i ~

Now assume the interaction of the valence spin-
up neutron with the core is a 5 interaction -A[1
+(-1)rx] 5(r, —r,). A not uncommon choice is x

I= ~, for which the strength in a T= 0, S= 1 state
is twice that for a X=1, S=O state.

Assume the quadrupole moment of the spin-up
and spin-down protons in the core is proportional
to the strength of the interaction. I introduce Q,

I arrived at these results by noting that the v&-
valence-neutron interaction is in a pure s =1
state while the r&-valence interaction is half sin-
glet and half triplet. The proton contribution to
the M, (3) expectation value is then

—,'q, (2.79)x .
Rather than calculate Qo we can make an associa-
tion with an E2 effective charge. The effective
E2 charge for a valence (d, ~,) neutron is defined

en Qcore proton/Qr (Qmi + Qwf)/Qr

= q, (1+x/2)/q, .
Thus the proton contribution to M, (3) is

[x/2(1+ —,'x) ]e, (2.79)q r.
This is clearly the opposite sign from the value
of M, (3) for the d, ~, neutron (- 1.91qr). We re-
call thatx is about ~ and e, is often taken to be

Since the proton contribution is proportional
to x, the result is due to the spin dependence of
the interaction.

We now come to the neutron core contribution
1.91Q„~. The interaction with the valence neu-
tron is in a pure s = 0 state, and so if we assume
that the deformation is proportional to the inter-
action (which is equivalent to first-order pertur-
bation theory) we get

q,&=~(1 -x)(1.91) =
(

" (1.91)q,.
This is also the opposite sign from the value for
the d, y, neutron. The reason is clear: Only spin-
down neutrons contribute, plus the fact that a
quadrupole distortion of the core has the same
sign as that of the particle.

Up to now, the result for the value of M, (3) is

xe, (1-x)e„
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We next consider a modification of the above re-
sult due to RPA correlations. We will do this in
a simplified way. We first note that the neutron
core contribution can be written in terms of the
E2 effective charge correction for a valence pro-
ton. The point is that if cha, rge symmetry holds
the valence-proton-core-proton interaction is the
same as the valence-neutron-core-neutron inter-
action.

I define the effective charge for a valence pro-
ton ("F)as

Q, 1-x
'F

2 Q

Hence the result for the value of M, (3) can be
written as

e, x1.91
"( '

2(1+@/2) " ' 1+x/2

(Remember that the term with e„ is due to the
protons and the term with e „ is due to the neu-
tron. )

When one calculates e, and e „ in first-order
perturbation theory, e „comes out to be much
less than e, . However, when one does a random-
phase-approximation (RPA) calculation they come
out to be much closer to each other. Hence the
last term, due to the core neutrons, might be very
sensitive to RPA correlations.

I now illustrate the effect of the RPA by doing
a simplified calculation. I call the first-order
charges e» and e ~, and the RPA values e„,and
e ~„. I introduce isoscalar and isovector charges
as follows:

e~„=(le~'I+ le~'I)/2,

e~„=(le~'I —Ie~'I)/2.

The RPA results can be obtained by changing the
energy denominators. If one uses zero-range
effective interactions, e.g. , of the Skyrme type,
then the effective mass is one which means that
the unperturbed single-particle, single-hole
splitting for the quadrupole state is very close to
2k'. An approximate way of simulating the RPA
is to change the energy denominators from 2hw

to the energies of the isoscalar and isovector
giant quadrupole states. These are approximate-
ly v2 h~ and 48~, respectively. ' We then obtain

es =(ale~'I+2 le~'I)/'2,

e„,=(v2 le 'I--,' le 'I)/2

or

e~„=-,'(v2 +-,')e~, +-,'(v2 ——,')e~, ,

es, ——2'(W2 ~)ez„+~(&2+ ~)ez, .
We shall see that it is not so easy to get the ef-

fective charges, especially e „unambiguously,
either from theory or experiment. I quote two
recent analyses. Brown, Arima, and McGrory'
give for d, g,-d, ~, in mass 17 e, =0.33+0.01, and
e „=0.14 + 0.23 according to one analysis and 0.24
+0.27 according to another. In analyzing mass
18 they get e, = -0.07+0.03. Durrell, Harter,
and Phillips' determine the radial integrals
(d, /2I r 'I d, /, ) from sub-Coulomb heavy-ion trans-
fer and deduce for d, y, -d, ~, e„=0.43+ 0.02, e„
= 0.48 + 0,33,

The range in variation of e, is too wide for our
purposes. Let us keep in mind that by e„we
here really mean the neutron-core deformation
due to a valence neutron, not the proton-core de-
formation due to a valence proton, One can have
large breakdown of charge symmetry due to loose
binding effects, Basically what happens is that if
a proton is loosely bound it is far away from the
core and therefore cannot polarize the core very
well. In that case e, would be very small. But if
the corresponding neutron is more tightly bound
it may well be able to polarize the core neutrons
more strongly.

Despite the difficulties mentioned above, I feel
that meaningful limits on e, and e, can be ob-
tained from theory. Let us consider several
cases which are in order of increasing believabil-
ity (in the author's opinion).

(1) Take ez„——2 and x = s. Use first-order per-
turbation theory. Then e graf 7 ep 7 ~ The value
of M,(3) is Qr( —1.91+0.2+0.23) = —1.48Q& (corre-
sponding to valence, core proton, and core neu-
tron contribution). The suppression factor is
1.48/1. 91 = 0.77.

(2) Use the RPA ~ Assume ez, =-,' e~, as above
and arrange for e„, to be ~. We then find e„~
= o.34. Using the RPA result we find

M, (3) = Qr(-1.91+0.20+0.56) = -1.15Qr.

The suppression factor is 1.15/1.91 = 0.6.
(3) We now change x from ~ to 1. This looks

like a drastic step, but it can be justified. The
value x =

& is chosen for spectroscopy of a few
valence nucleons. But with such an interaction
the symmetry energy is much too low. If we
change to x = 1 we get a much better symmetry
energy. Since core polarization is a one-body
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field effect one should choose an interaction which
yields the best one-body potential, including the
symmetry energy.

In this case e~„=0. However, the proton
charge becomes finite in the RPA. Again we take
e» ——0.5, We find

v2 ——,
'

eZ7i = ~ i exp =0.24 ~

v2 +—2

Now

M, (3) = Q„(—1.91+0.46 + 0.31)= —l.14Q„.
The suppression factor is 1.14/1.91=0.6, the
same as in case (2).

It is our feeling that the RPA calculation is
more sound than the first-order one. Theoretical
support for this argument comes from the work
of Brown, ' who notes that when one linearizes
the Hartree-Fock equations for a core plus one
particle, the effective charges satisfy the RPA
equations of motion.

We now consider the [Y, 1 ]0' term. This can be
written as ar'Y, ;L,+ b[r'Y. ..L,+ x'Y. . .L,]
where a and b are constants. We can further re-
duce this to the form C,z'I. ,+C,(x'+y')L, . We
now can easily see that this will vanish if we
choose the usual form for the deformation of the
core. It is most convenient to discuss this in
terms of the asymptotic Nilsson quantum numbers
1V, n„and A.

For an axially symmetric deformation the val-
ues of z and x + y are the same in the states
+ A and —A. Hence z'L, and (x'+y')L, will be
equal and opposite, and will cancel. Also the
matter distribution is the same for + A and —A,
so that it is hard to see why these two states
should have different deformations.

In conclusion, I hope I have convinced the read-

er that there is indeed a spin-quadrupole correla-
tion present in a nucleus and that it has observa-
ble consequences. When a valence neutron is
added to the core, it is the Pauli principle which
causes this correlation in the core neutrons, and
it is the spin dependence of the interaction which
causes this correlation in the core protons.
These two effects add coherently in causing a
suppression of the M3. moment.

A list of M moments by Migdal" indicates that
there is a suppression, relative to the single-
particle model, in a large number of nuclei.
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