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Electron Heat Transport in a Tokamak with Destroyed Magnetic Surfaces
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Formulas for the electron thermal conductivity have been derived in the collisional
and collisionless limits for the case of destroyed magnetic surfaces.

The aim of this article is to consider electron
heat transport due to parallel thermal conduc-
tivity in a tokamak with destroyed magnetic sur-
faces. ' There is evidence of runaway-electron
leakage' from tokamaks which indicates that such
magnetic braiding' may exist. Moreover, recent
microinstability theories' predict the formation
of magnetic perturbations with dimension r, (ion.
gyroradius) or slightly less. We restrict our-
selves to discussing static magnetic perturba-
tions which is appropriate for these modes with
au&a, /R, as can be seen from quasilinear esti-
mates.

First we review the most important geometric
characteristics of the braided magnetic field. We
use as an example a magnetic configuration in
cylindrical geometry, B=B,z+Be(r)6+ 68, but
most concepts can be easily generalized to tor-
oidal configurations. In order to model toroidal
periodicity, we assume that the system is peri-
odic in the z direction with period 2mB. Then 6B
can be written in the form

5B = Q b „(r)exp [ i(m& —nz/R) ) + c c.
ff there is only one harmonic in Eq. (1), then the
field is helically symmetric and has exact mag-
netic surfaces. These surfaces have the shape
of so-called magnetic islands near the rational
cylindrical surface x „, defined by the condition
g(x) = rB, /RB e = 1/par) = m/n. The width of the
separatrix of the island is given by the formula'

(2)

In the ease of many harmonics being present,
mapping is used as a practical way to determine
whether magnetic surfaces exist or not. ' Sur-
faces exist if the points of intersection of a field
line with planes z =2nnA lie on a smooth closed
curve. If the mapping is not a smooth curve but

rather a sequence of irregular points which can
fill the whole area, then we may say that mag-
netic surfaces are destroyed. The transition be-
tween these two cases is quite sharp and is de-
scribed by a stochasticity parameter, '

s = —,'(n„„+a,„.)/ ~
r „r.-„.~,

where m, n and m', n' represent any two harmon-
ics which have neighboring rational surfaces. If
s ~ 1, then magnetic surfaces are destroyed in the
region between x „and z „., and the field lines
wander ergodically. s = 1 corresponds to over-
lapping of islands of different helicity. ' The tran-
sition region is very complicated' and we will be
discussing mainly the case of high stochasticity,
s»1, with dense rational surfaces.

Consider a small circle of radius lp in the plane
z = const and map it by solving the equation dx/
dz =B„/B„rd&/dz =Be/B, . This magnetic map-
ping is area preserving, as a consequence of the
equation V 8 =0.

There will be two different stages of evolution
of our area. First, it will move as a whole, and
also it will deform its shape stretching in one di-
rection and contracting in the other. This proc-
ess can be described analytically for continuous
mapping by the equation

l(z)=f, e px(z/ L).

For the simple mapping corresponding to is1ands
of fixed m with different n the correlation length
ha's been given as' L, = mR/in(ns/2). For our
case with many m and n values excited we might
expect I., to be smaller, but the precise formula
i.s unknown. '

Such behavior is called stochastic instability of
trajectories. The width 5 of the area will expo-
nentially decrease in order to conserve the total
area, i.e. , 6(z) = l, exp(.—z/L, ). When l(z) ~ r/m,
where m is a characteristic mode number, dif-
ferent parts of our stretched area start to move
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '

Let us turn now to the subject of this Letter:
electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.

Suppose that in some small region we mark in-
stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„= ((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A. » L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.

Let us start our experiment. Initially, we have
a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "

It is instructive to compare this case with the
similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-
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Xr Dsf X )}/Lg6 (6)

Diffusion is reduced by a factor of X/L, z from
the collisionless case, Eq. (6).

Now that we have calculated the relevant trans-
port coefficients in a braided magnetic field, a
logical step in understanding would be to assess
the effects of the stochasticity on the nonlinear
behavior of the mieroinstabilities which are al-
leged to be its cause. ' This is obviously a for-
midable task. A more realistic approach might
be to assess the effects of the thermal conduc-
tivity we have estimated, and related transport
coefficients such as electron viscosity, on the

ductivity X„=Xv. This gives {(hr)')=D„(XI/)' ',
which is (t/7)'~' times smaller than the diffusion
given by Eq. (6).

Consider now the co1.1isional case A. «L, . Any
substantial spreading of the area in the radial di-
rection due to the mapping will take place after
the particle has collided many times to move a
distance L «L, . Because of this, we will con-
sider perpendicular motion as a continuous proc-
ess with the classical diffusion coefficient g~
= vr, '/X Th. e parallel motion and the effect of
collisions on it will be treated the same way as
before. Consider a small element of evolving
area which has a typical size 5. There will be
two competing processes: Because of stochastic
instability, the width of this element will de-
crease exponentially, i.e., d5/dL=-6/L„where
dL is the distance which the particle moves dur-
ing the time dt. For any dL» A., the particle is
diffusing in the z direction so that dt =(dL)'/X, ~.

During the same time dt this element will in-
crease its width because of perpendicular diffu-
sion: d6 =(X~dt)'+ =dL(X~/X, ~)' . The balance
between these two processes allows us to esti-
mate that 5= L, (X~/X ~~)' '. We assume here that
5«r/m. If we cut the area into small pieces of
size 5 then the correlation length for them may
be calculated by setting l, = 5 and l(s) = r/m in
Eq. (3), to find

int. (r/~L )(Xg/Xi)

with the corresponding time for parallel diffusion
t~ -L,~'/X~, . Thus, t~ is the time during which a
particle may be thought of as orbiting along a
single field line before diffusing to a new field
line whose trajectory is no longer correlated
with the original one. This complicated continu-
ous evolution can be considered simply as a ran-
dom walk with the step size {(hr)')=D„L,~. This
gives us, for the thermal diffusion coefficient,

linear theory of those modes —estimating satura-
tion of stochasticity to occur at the marginal
stability point. Out of such a detailed study might
come an explanation of confinement scaling.

In this paper, however, we restrict to our-
selves to a much more limited objective, merely
examining some implications of the assumption
that observed energy losses are due to magnetic
braiding. %e stress that we have not ruled out
alternative explanations of anomalous losses.

A possible difficulty in applying our model to
present tokamaks comes from consideration of
the confinement of energetic runaway electrons.
While not very well known, their confinement
time is measured to be about equal to or slightly
longer than that for thermal electrons. From
Eq. (6) we would infer, however, that their con-
finement time should be about c/v ~15 times
smaller. One possible explanation for this anom-
aly is that the gyroradii of such particles is fair-
ly large, comparable to ion gyroradii, so that
their drift orbits are not affected by fine-scale
braiding. This would argue that the predominant
scale for braiding is somewhat smaller than an
ion gyroradius, consistent with microinstability
theory and turbulent density-fluctuation measure-
ments.

We may use Eq. (6) to infer the diffusion coeffi-
cient. Observed confinement times are crudely
fitted by ~= 10 "na' (cgs units) from which we
infer, at a density n = 10", that the experimental
value of X„=10'cm'/sec, and hence D„=10 '
cm. From Eq. (2), we see that D,,=B~b ~'~ /
B,' =R(B„~'/B,' Here. we have assumed, as is
reasonable for microinstabilities, that all modes
m, n have roughly equal amplitudes for mode num-
ber m&m (where m „ is to be determined
from the microinstability theory). We have also
assumed a radial extent of the mode comparable
to its wavelength.

Equating the experimental and theoretical val-
ues, we see that ~B„~'/B, '-10 ' is adequate to
give the observed losses if the field is indeed
stochastic. As we have discussed earlier, the
condition for this is roughly that islands should
overlap. The mean distance between adjacent
rational surfaces is approximately r/m~' and,
using Eq. (2), we obtain the approximate condi-
tion for stochasticity jB„~/B,&0.1/m~, „' '. Cur
rent microinstability theories and fluctuation
measurements indicate that m ~ &r/r, In typi-
cal tokamak experiments r/r, &10' and the condi. -
tion for stochasticity is well satisfied.

We conclude then that if the perturbed magnetic

40
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fields are indeed caused by microinstabilities on
the scale of an ion gyroradius, then fields of an
amplitude sufficient to explain by stochastic dif-
fusion the observed energy losses would also be
sufficient to produce stochasticity —thus making
the picture self-consistent in this respect. There
remains of course the open question whether this
transport can explain the saturation of the micro-
instabilities at the observed level.
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