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This paper treats the problem of solving the linear equation which arises when a non-
linear evolution equation is linearized around some particular solution. It is shown that
if the original equation is of completely integrable Hamiltonian form there are an infinity
of explicit solutions of the linearized equation. These are almost always linearly inde-
pendent.

Frequently, one encounters the following prob-
lem: We have some nonlinear evolution equation
and a particular solution of it. It is desired, for
example, to study stability or quantization, to
discuss the equation linearized around the partic-
ular solution. Now it is well known that if the
original equation is translationally invariant one
can immediately write down a solution of the lin-
earized equation. Thus, if the original equation
is invariant under spatial translation and u is a
solution, then Bu/Bx is a solution of the linearized
equation. Similarly, if we have time translation
invariance, Bu/Bt is a solution. In general these
two solutions are linearly independent and non-
trivial. There is one special case. If &=u(x —ct),
then these solutions are proportional.

Here we wish to point out that for a very large
class of evolutions many more explicit solutions
of the linearized equations are readily obtained.
These solutions are related to the densities of
conserved functionals. The class of evolution
equations involved appears to include NE of those
which are known to be completely integrable by
the inverse-scattering transform method and even
some for which this is not known. Since in the
former case we know that there are an infinity of
conserved functionals, we obtain an infinity of ex-
plicit solutions of the linearized equations.

The essential theorem' used to obtain our re-

Xn words, the infinitesimal contact transformation
generated by 6 yields a solution of the linearized
equation.

We consider here two applications.
(I) The situation envisaged by Lax. '—Here the

evolution equation is of the form

~u 8 6H
Bt Bx bu(x) ' (4)

where H is some functional of u. Poisson brack-
ets between two functionals I

„

I', are defined by

[y, ~,]— 5@, e 6y',
Bu(x') Bx' bu(x')

Then Etl. (4) is of Hamiltonian form,

Bu/Bt =[u, H];

suits is the following: Consider a Hamiltonian
system. We have a Hamiltonian H and an appro-
priately defined Poisson bracket [,] such that the
equations of motion are of the form

dZ/dt = [Z, lf]. (I)
Let G be a conserved functional, i.e.,

[c,a] =o;

then a solution of Eq. (1) linearized around a par-
ticular solution I' is
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and conserved functionals, i.e., such that

de/dt = 0,

satisfy

(6)

with G(x) = —G(- x). Here,

Q dx
- (p+1)(p+2)

f 5&BQ "5j' B 5II———dx =[a,H] =O.
5u Bt ~ 6Q Bx 6u

1
+

2

~ Bu ~ I BQ
G(x' —x), dx dx',

00 X BX
(14)

Now Eq. (4) linearized around some solution u

has the form

with 8 G/Bx = G(x). Thus

6H u +
p

BQ IG(x' -x), dx'.
Bu p+1

8 v/8 t = (8/Bx)(Nv),

where the linear operator N is defined by

(8)

oo I BVG(x'-x), , dx' .
Oo BX

The linearized form of Eq. (13) is then

Bv
Bt BX

Q V+ (16)

d M(u+ev)Nv=-
6Q

The theorem tells us that if I [u] is a conserved
functional, we have as a solution of Eq. (8)

P 6u(x') 8 6F
v( xt)=[ uE]=jl 6 ( ) i6 (

I)dx

-X I, I dXBx' ~u~x'

Bx 6u(x)
' (10)

B'.p~ Bu

BX BX

Thus, the derivative of the conserved density sat-
isfies the linearized equation.

There are three "classical" conserved function-
als corresponding to Eq. (4). These are

I, =fudx, I, =f 2u'dx, I, =H,

with functional derivatives y, = 1, y, =u, p, =6H/
6u. The corresponding solutions of Eq. (8) are

Bp i/Bx = 0~

which is trivial, and

If p =1, G(x) = —&'(x), then Eq. (13) becomes
the Korteweg-de Vries equation

I4= ——u —+ —,dx.

Thus~

6I, us Bu 2 82u 6 8 u6' = —+
8

+2u, + —,. (20)
~u 3 Bx

In addition to solutions v =u„v=u„we then have
the solution

(21)

If p = 1, G =1/x, ' then Eq. (13) becomes the Ben-
jamin-ono equation

Bu Bu B Q—-Q-
BX BX

This, it is known, has an infinite number of con-
served functionals. Thus, we have an infinite
number of solutions of the specialization of Eq.
(16),'

Bv Bu Bv Bsv—= —v+ —u+Bt Bx Bx Bx

The simplest nonclassical of these corresponds
to the conserved functional

Bp, B 6H Bu

Bx Bx 6u (12)

Bu Bu 8 - Bu/Bx'
Q dxBt Bx Bx " x —x (22)

which are the solutions mentioned in the begin-
ning.

However, for special forms of H there may be
more conserved functionals. For example, a
typical equation of the form of Eq. (4) is

I4=

u(x)u(x') Bu/Bx'
x —x (23)

This is known" to have at least one more con-
served functional than the classical ones. It is

Bu z BQ
Q +Bt Bx Bx

G(x' —x), dx', (13) From this we conclude that if u is a solution of
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Eq. (22), then v =ByJ'Bx is a solution of

B v B Bv/Bx'—= @~V + QV~ + ~ dX pBt ~X -m X —X

where

(24)

Thus,

y, = —cu/3

and, in general,

y„=(- c)" 'u/3, n & 2.

(30)

(31)

"[u(x) yu(x')] Bu
q dX ~

oo X X BX
(25)

%e should consider the question of linear inde-
pendence' of the solutions obtained. These all
seem to be independent except for one very spec-
ial (but unfortunately very interesting) case.
That is the case where u =u(x —ct):he single-
soliton case. As we saw, the solutions v =u„and
v =u, are proportional. The case of the general
conserved functional is readily discussed in the
Korteweg-de Vries case. Then, ' the density of
the nth conserved polynomial functional can be
written in the form

u(x, &) = Q; u;(x —c; t), c; W c, for i &j. (32)

Then certainly u, &u,.
(2) The Toda lattice Th.—e equations as origi-

nally formulated' are already in Hamiltonian
form. They are

qn= np

The reason for this degeneracy appears to be
that for solutions of this special form the time de-
rivative is equivalent to the space derivative. In
other cases the different conserved functionals
give rise to different solutions of the linearized
equation. For example, in the n-soliton case we
know that asymptoticaLLy u has the form

q „=M""'1,

where the operator M is defined by

ug 1
Mg= 2+ —+ — u(x), dx.~x 3 3 "~ ~x

Thus, rp, =1, q), =u/3, and

(26)

(28)

p, = -{.exp[- (q„„-q„)]-exp[- (q„-q„,)]3.

Flaschka" has shown the existence of an infinite
number of conserved functionals I N. Using these,
we construct solutions of the equations linearized
around a given solution by

However, if in Eq. (17) we put u=u(x-ct) and in-
tegrate, we obtain

82' Q2—CQ= +aX2 2

q
(~) [q (o) ~ (q(o) p(o)] B+ /Bp (0)

P (i) [P (o) ~ (q(o) P(o))] B~ /B (o)

The first three nontrivial constants are

(34)

Q p (35)

Z (exp[-(q —q, )] —1]+p '/2, (36)

Z &exp[-(q -q. ,)]][p. ,+p,]+(p.)'. (37)

Corresponding to the two "classical" constants I', and E„wehave the solutions

q(x) 1 P(i) 0andq(x) q(o) P(x) P(o)

while for the nonclassical constant E„weobtain

q„'"=[exp[—(q„'"-q ")]+exp[- (q„„'"-q„„,'")]]+3(p '")'

p '"=4m[-(q '"- q '")D[p -,'"+p. .'"]-4m[-(q.„'"-q.'" )j]l p.'"+p. ,'"].

(38)

(40)

Contrary to the continuous case discussed above even the solutions obtained around the one-soliton
solution are linearly independent.
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