
VoLUME 40, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JxNuaav 1978

in the understanding of adsorption on semicon-
ducting surfaces in general. We plan to discuss
our methods and findings at length in a forthcom-
ing publication.
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The anomalous behavior of the magnetic crystalline anisotropy in Ni metal at 4 K can be
interpreted by the passage of the top of the X2~ sub-band through the Fermi energy, when
the magnetization direction is changed. The number of holes in the corresponding hole
pocket varies between 0 and 1.4 && 10 5 holes/atom. Fair agreement between theory and
measurements is obtained,

It is known" that the magnetic crystalline ani-
sotropy in Ni metal at low temperature cannot be
described with only a few anisotropy constants,
as is the case with most other magnetic metals
and alloys. Aubert et al.' recently published
very accurate measurements of the torque due
to this anisotropy as a function of the crystallo-
graphic direction of the magnetization, which
show significant Fourier components at least up
to degree 34.

On analyzing these results we observed a small
anomaly in the torque as a function of the mag-
netization direction if this direction has an angle
of about 18 with the nearest cubical axis. This
anomaly has been observed earlier by Franse, '
who tentatively associated it with the movement
of the top of a band through the Fermi level.
Furthermore, we found that the Fourier compon-
ents of degree 12 and higher can be interpreted
as due to an anomalous contribution, which is
zero unless the magnetization direction lies with-
in 18' of the nearest cubical axis. The measured

torque can be decomposed into a regular torque,
which is described with four conventional anisot-
ropy constants, plus a much smaller anomalous
contribution, as shown in Fig. 1.

We suggest that the latter contribution is due
to a movement through the Fermi-energy level
of the top of the X,~ band. Band calculations posi-
tion this band near the Fermi level; an old semi-
empirical calculation by Zornberg' places it at
the Fermi energy within the attained accuracy of
0.002 Ry (30 meV). In more recent self-consist-
ent calculations, Wang and Callaway4 find the
top of the X,~ band about 0.03 Ry (0.4 eV) above
the Fermi level. The partial inclusion of electron
correlations reduces' this difference to 0.002
Ry; these authors suggest that, with another cor-
rection, the top of this band may be pushed down
below the Fermi energy.

Because of spin-orbit coupling, all energy
bands shift slightly if the magnetization direction
is varied; Wang and Callaway' computed that
the top of the X,~ band at the point in reciprocal
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FIG. 2. Schematic representation of the X, ~
sub-

band in Ni, as dependent on the direction of the mag-
netization. Solid line, M along [0,0, 1]; dashed line,I along [1,0,0].
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negative contribution to the total energy of the
crystal, due to redistribution of electrons from
the top of the X,~ band to other parts of the Fermi
surface, as long as the magnetization direction
lies within 18 from a cubical axis. If the top of
the band lies an energy & above the Fermi level,
the energy amounts to
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FIG. 1. Magnetic anisotropy torque of Ni at 4 K in
two crystallographic planes, decomposed into a regular
part, which can be described with four constants, plus
a anomalous part. Note that the amplitude of the anom-
alous torque is only 2% of the amplitude of the regular
torque.

space, denoted by X(0,0, 1), shifts downward by
0.0017 Ry (23 meV) if the magnetization direc-
tion is rotated from the [0,0, 1] to the [1,0, 0] di-
rection. (It is clear thatX(0, 0, 1) andX(1, 0, 0)
are no longer equivalent if spin-orbit coupling is
taken into account and the magnetization lies in
the [0,0, 1] direction. j A similar shift of the X5~
band has been found by an analysis of de Haas-
van Alphen data. '

%e can interpret the anisotropy measurements
now by assuming that the top of the X,~ band at
X(0,0, 1) lies slightly above the Fermi energy,
at a direction of the magnetization along the
[0,0, 1] axis, but that it shifts down when the
magnetization is rotated, and that it lies exactly
at the Fermi energy if the magnetization is ro-
tated 18 away from [0,0, 1]; see Fig. 2. (Due to
cubic symmetry, the energy change should be
the same up to second order in the angle if the
magnetization rotates away from [0,0, 1] in any
plane containing this direction. ) This causes a

Denoting the angle between the magnetization
direction and the nearest cubical axis by p, we
may assume that for small y the energy E de-
pends quadratically on y so that e = C (y,

2 -g) if
p, is the value of p for which the top of the band
lies exactly at the Fermi energy (p, is about 0.3
rad). On substituting this expression in (1) we
get for the energy E and the torque L = —&E/By,
as functions of y,

~ (p
2 y2)5/2 L kg (y 2 y2)3/2p

if P&P0,'

E =0 and I =0, if p-p. (2)

B is a constant, equal to (C' 2/15m 2) (2 p~ */K2)2 '.
If we fit the measured anisotropy torque with a

regular function, containing four conventional an-
isotropy constants, plus an anomalous function
we get fair agreement between the experimental
data and the fitting function. The agreement was
improved somewhat by broadening the above func-
tion a little near the anomaly; this is probably
related to the difference between a real Ni crys-
tal and an ideal, perfect crystal at 0 K.

We obtained the following values for the four
regular anisotropy constants &„...,&4, defined
in the usual way, and the two anomalous con-
stants B and p„relating to Ni at a temperature
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of 4.2 K in a field of 19179 Oe:

&, = —129 675+ 20 J/m',

X, =47060+ 450 J/m',

&, =13240+ 80 J/m',

&~= —10100+ 1200 J/m',

& = 105 700 + 1000 J/m',

y, =0.307+ 0.002 rad.

Assuming that this anomalous part is indeed
caused by the shift of the top of the X,~ band, we
can now calculate some parameters of this band.
Taking m * equal to 197mo, ' we get C = 5.92 x 10 "
J =37 meV. The maximum height of the top of
the X, ~ band above the Fermi energy is therefore

=Cpa' = 5.58&& 10 "J =3.5 meV. Extrapolating
the relation e=C(p, ' —p') to e=&C(cos2y- cos2po),
which has the required symmetry, we find an ex-
perimental difference between X,~(0, 0, 1) and
X,~(1,0, 0) of value C =37 meV. Because of un-
certainties in this extraplation and in the numer-
ical band calculations, vve think the agreement
with the calculated value' of 23 meV is satisfac-
tory.

We find therefore that X,~(0, 0, 1) lies 3.5 meV
above the Fermi energy, and thatX, ~(1,0,0) lies
about 33.5 meV below the Fermi energy (magneti-
zation is along [0,0, 1j).

The maximum number of holes in the X,~ pock-
et is now

= (6n ) ~(2m' Q )3~2=].3x]024 holes/m3

—1.4x 10 5 holes/atom.

If we assume this hole pocket is spherical (be-
cause of symmetry, it should be an ellipsoid of
revolution; band calculations indicate it is nearly
spherical), we can estimate the maximum de
Haas-van Alphen frequency connected with this
hole:

EdH„A=m*c /@e =59 T (=590000 G).

This de Haas-van A1phen frequency, which has
never been found experimentally, should be ob-
servable in a nearly perfect crystal, only if the
field is along a t 0,0, 1] axis.

At temperatures above liquid-helium tempera-
ture, & becomes comparable to or smaller than
W; it is therefore understandable that the anom-
alous contribution to the anisotropy is observable
at low temperature only.

The author is indebted to Dr. J. J. M. Franse
and Professor G. Aubert for valuable discussions.
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