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modes of different n becomes more pronounced
as k,p, -1, and the eigenmodes become nearly
degenerate and difficult to differentiate. We have
also carried out numerical studies with finite ion
temperature, and electron and ion temperature
gradients, employing the complete collisionless
slab model of Ref. 2. For I-„/I, =0.02 and 0 ~ T; /
T, ~ 1, no growing modes were found for —1
&g„q; &1, where);=din&, /dinn. For k,p, -l,
the damping rates remained near zero over the
entire range of parameters. For k, p, «1, the
effect of a reversed electron temperature gradi-
ent, g, &0, was found to be in the direction of in-
stability, as expected, but unable to overcome the
shear stabilization.

Finally, we remark that we have not shown all
drift waves to be stable. In a torus, there are a
number of effects, such as ballooning or trapped-
particle collisions and drifts, which can lead to
instability. Further, the existence of convective-
ly growing wave packets should be reexamined in
the light of the present work.
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The roots of an improved analytic eigenvalue equation for the absolute universal or col-
lisionless drift instability in a sheared magnetic field are found numerically and com-
pared with the eigenvalues obtained from a numerical solution of the exact differential
equation. The startling result is that both techniques predict stability, no matter how
weak the shear or how large the transverse wave number, in contradiction to all previous
work. Stability is due primarily to the stabilizing influence of the nonresonant electrons.

Since the pioneering work of Pearlstein and
Berk, ' the instability of the collisionless drift
wave in a sheared magnetic field has been the
subject of numerous investigations. ' 4 This in-
stability, which is driven by the the wave-parti-
cle interaction between the drift wave and the
electrons, is also termed the "universal insta-
bility" because its existence requires only a den-
sity gradient which is a necessary feature of a
confined plasma. Previous investigations have
employed perturbation theory' or approximate
numerical solutions' of the perturbation-theory
solution near marginal stability. 4 In Ref. 4 the
same differential equation is solved by breaking
up the spatial domain into inner and outer re-
gions. In the outer region, the resonant electron

term is subdominant and the equation can be
solved iteratively. This outer solution is then
matched to a jump condition derived in the inner
region.

Recently, Catto and Tsang' extended the work
of Rosenbluth and Catto4 to obtain an improved
eigenvalue equation for all even and odd radial
eigenmodes. More importantly, they were able
to discover the limit in which the perturbation-
theory results could be recovered from the more
exact expressions valid for arbitrary growth
rates. "' As a result, there emerged the possi-
bility that the perturbation-theory form of the dis-
persion relation is inadequate because it can only
be recovered in a limit in which small correc-
tions can be important. In particular, the per-
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turbation-theory form was found to be more ac-
curate for the more strongly damped modes. '
For growing and marginally stable modes the per-
turbation theory is expected to be only qualitative-
ly correct.

In this Letter, we compare the improved analyt-
ic result of Refs. 4 and 5 with the perturbation
form and with a numerical solution of the relevant
differential equation. The agreement between the
improved analytic result and the numerical solu-
tion is found to be remarkably good. To our sur-
prise, in contrast to the perturbation form, both
the analytic result and the numerical solution
show no instability at all for a wide range of pa-
rameters. Our results' to date indicate that the
collisionless drift wave is always stable for the
parameters of interest in tokamaks.

It seems likely that all previous work has been
too strongly influenced by the perturbation-theory
form of the eigenvalue equation. In fairness to
previous workers, it must be pointed out that all
three results have qualitatively the same behav-
ior in paramater space. However, only the per-
turbation-theory form of the eigenvalue equation
consistently predicts instability for parameters
relevant to the tokamak.

In addition to the misconception based on the
perturbation theory, it is also commonly believed
that the electron Z function that describes the
electron response is well approximated by its
residue. %hen this approximation is employed in
the numerical solution of the differential equation,
however, instability is predicted. Near the ra-
tional surface, the electron Z function varies rap-
idly and is poorly represented by its residue. In
this region, reliable results can be obtained only

by a numerical scheme with a sufficiently small
grid.

Furthermore, away from the rational surface
where the residue becomes an accurate approxi-
mation, a comparison of the perturbation theory
with improved analytic results indicates that the
wave-electron interaction is somewhat less de-
stabilizing than is normally believed. This con-
clusion follows because the perturbative treat-
ment employs a lowest-order eigenfunction that
neglects the stabilizing deformations due to the
radial structure of the resonant term; thus, it
cannot properly predict the stability regions for

the collisionless drift wave. The improved ana-
lytic model retains these corrections.

In this Letter, effects due to temperature gra-
dients are not retained. However, they are ex-
pected to be stabilizing for normal profiles. Fur-
thermore, only the most unstable (lowest even)
eigenmode is considered, although the next mode
(lowest odd) has been considered also and found

to be more stable as, expected.
In the absence of temperature gradients, the

eigenmode equation for the collisionless drift in-
stability is of the form'

where the electrostatic potential is written as
C(x)exp(-i&ut+iky). In Eq. (1), A contains the
basic drift-wave terms,

J = p, -'D '{~[1+7(1- r, ) j-~„r,),
with D=(&u 7+~*)( r, —I', ), where p, =(c/eB)
x(M,.T,)'~' is the ion gyroradius, co* =kcT, /(eB/
L„) is the electron diamagnetic drift, T = T, /T,
is the temperature ratio, I'„=I„(b)exp(- b), I„ is
the modified Bessel function, and b=(kp, )'. The
p'x' term is the usual shear term due to the ion
inertia, and p is defined by

p = (a&*L„/&ovL,p, ')S'~', .

where

S=D '(~7+ co*)I;, L„'= —& lnN/Bx,

N is the density, and L, is the shear length. The
O'4/Bx' term appears because of the finite gyra-
tion radius of the ions; o/x is the destabilizing
resonant electron contribution, with v defined as

o(lxl)=p; 'D '(~-~*)x,~(x,/lxl),
where x, =(uL, /kv, and v, =(2T,/M, )'~' is the elec-
tron thermal velocity.

Equation (1) ca.n be solved by the method of
matched asymptotic expansions. " In the outer
region, the 0 term is treated iteratively, while
in the inner region, it is the dominant term in
the coefficient of 4. The boundary conditions are
that 4 must be outgoing at infinity and either 4
or 4' vanishes at x = 0 depending on whether 4
is odd or even. The eigenvalue equation for all
the even radial modes is

oo 1 iA 1 iA .
'

n iA—+—sin — 1+— ln [x,(2 p)' ' j = 0,2w(ip)'I' 4 4p 4 4 p 4 4W
(2)
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where

o, = is'"x, p, .'D '(~ —(u, ) .
Equation (2) can be obtained from the lowest-order form of Eq. (25) in Ref. 4. In Ref. 5, it is pointed
out that the perturbation-theory form of the eigenvalue equation can be recovered by employing the
representation for the I' function valid in the vicinity of the poles (argument equal to zero or a negative
integer). For the lowest even mode, the perturbation theory form is recovered by replacing p(» —iA/
4p) by its small-argument limit and employing A = —ip elsewhere to obtain

A+ i p = 2o,(ip/s)'" ln [x,(2 p)'~'].

Rather than determine the numerical solution of Eq. (I), we retain the full ion Z function so that the
eigenmode equation to be solved numerically is

(4)

where x, = tuL, /kv, and v, = (2T,./M, .)'" is the ion
thermal velocity. The lowest even mode of Eq.
(4) is found numerically by an invariant imbedding
method. ' The boundary condition at infinity is
satisfied by picking 4 = 0 at x = E and shooting in-
ward. The shooting length l varies in practice
about 10p, to 75p, , depending on whether or not
the mode is strongly spatially damped. Use of the
WEB solution to first order instead of 4=0 to
start the integration permits shorter shooting
lengths. The results of both methods agree if l
is sufficiently large. However, care must always
be taken to verify that the eigenvalue is insensi-
tive to the shooting length. A variable-step inte-

grator' is used to handle the fast g variation of
Z(x, /x). The complex secant method is employed
to locate the value of to such that 4'(x= 0, to) = 0.
Eigenfunctions are easily recovered.

In Fig. 1, the imaginary part of the eigenfre-
quency associated with the improved analytic
eigenvalue equation [Eq. (2)] is compared with
that obtained from the numerical solution of Eq.
(4) as a function of kp,. for different values of
L, /L„. The agreement is remarkable. The slight
deviation for large L, /L„ is due to the asymptotic
nature of the analytic result. Both techniques
predict stability (Im&u &0) for L, /L„ from 8 to 32
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FIG. 1. Growth rate (normalized by ~.) vs kp;, for
T, /T» = 1 and various values of L, /L„, obtained from
shooting method with full electron Z function (solid
line) and analytic dispersion relation (dashed line).
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FIG. 2. Growth rate vs kp;, for T, /T; = 1 and various
values of I ~ /L„, obtained from shooting method with
only the residue part of the electron Z function (solid
line) and perturbation-theory dispersion relation
(dashed line).

329



VOLUME 40, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JANUARY 1978

and kp,. from 0 to 1.25. These results correct
the prior numerical results presented in Fig. 1

of Ref. 3, which indicated instability. In fact,
we have results for L, /L„up to 100 and kp; up
to 10. All indicate that the mode is actually
stable. The growth rate obtained from the per-
turbation-theory form of the eigenvalue equation,
Eq. (3), is plotted vs kp, in Fig. 2 for various
values of L, /L„. Instability is erroneously pre-
dicted for large kp, and L, /L„parameters. In
the more strongly damped region, the perturba-
tion theory agrees quite well with the numerical
shooting result. This is consistent with the as-
sumption of small v, which is necessary to ob-
tain Eq. (3) from Eq. (2). If the differential equa, —

tion, Eq. (4), is numerically solved with only the
residue of the electron Z function retained rather
than the full Z function (as is proper), an even
larger growth rate is found, also shown in Fig. 2,
However, the eigenvalues are found to be insensi-
tive to the large-phase-velocity approximation of
the ion Zfunction; the eigenvalues of Eq. (1) are
practically the same as those of Eq. (4).

Figure 3 shows a typical eigenfunction obtained
from the numerical solution of Eq. (4) for the
case L, /L„= 16, k p, = 1, and T = 1. Note that
(Re4)" is negative, which indicates that the dis-
tortion to the Weber solution caused by the reso-
nant electrons is much weaker.

Recall that the residue of the electron Z func-
tion is the contribution of the resonant electrons.
By comparing the shooting results of Figs. 1 and

2, we reach the important conclusion that the non-

0.8

0.4

resonant electrons have a strong stabilizing in-
fluence and stabilize the instability in weak shear.
The real part of ~ is found to be reduced when
the nonresonant part of the electron Z function is
turned on.

In Ref. 5, it is pointed out that Eq. (2) is ob-
tained by an a,symptotic expansion in which

~ o,/
p~ 2

)
~1 is assumed. If the next-order correc-

tions to Eq. (2) are retained, the improved ana-
lytic eigenvalue equation gives marginally better
agreement for the smaller L, /L„but far worse
agreement for the larger L, /L„. This behavior
is consistent with the asymptotic nature of the
solution technique employed in Refs. 4 and 5. In
addition, if the full Z function is replaced by its
residue, the next order analytic corrections
agree extremely well with the solid curves in
Fig. 2 for small L, /L„.

In conclusion, we have found from an improved
analytic eigenvalue equation and numerical solu-
tion of the appropriate differential equation that
the collisionless drift wave in a sheared magnetic
field is always stable for the parameter range of
interest in tokamaks. This result is in contradic-
tion to all previous work. The results of both of
our techniques are in remarkable agreement.
Stability is due primarily to the stabilizing in-
fluence of the nonresonant electrons (the princi-
pal-value part of the electron Z function). We
must point out, however, the convective-univer-
sal or connective-collisionless drift instability
has not been considered here and should be re-
considered in the light of these new results. Fur-
thermore, the reader is cautioned that stability
in the slab limit treated herein does not imply
that stability will persist when trapped electrons
and other toroidal effects such as ion drift are
retained,
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FIG. 3. ReC and ImC obtained from numerical solu-
tion of Eq. (4) with L~/L„= 16, kp; = 1, and Te/T; = 1.
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We have measured the specific heat of helium near the superfluid transition for films
up to 56 L thick and for samples confined to a cylindrical geometry of up to 2000 A in
diameter. The dependence of the shift in the transition temperature on size and the
growth of the specific-heat maximum do not yield exponents as expected from simple
scaling arguments. The data up to t=-(1 —T/T& ~~10 ' scale according to a form suggest-
ed by Fisher, but with an exponent 1/0 =0.54+ 0.02.

d=b(&t) ",
C =A.o lnd+ const,

(1)

(2)

(3)

where d is the smallest confining dimension, t
=1 —& /T„5t is the region of rounding, and &

and A are some characteristic exponents. Equa-
tion (3) applies if the bulk has a specific heat
which behaves as C =4 lnll —T/&, I; i.e. , the

Experimental studies of second-order phase
transitions are typically done in the limit where
the dimensions of the sample are much larger
than the correlation length. For samples of about
a millimeter in dimension, effects of sample ge-
ometry and boundary conditions at surfaces be-
come important in a region too close to the tran-
sition to be experimentally detected. It is of con-
siderable interest, on the other hand, to see how

these effects become manifest, and to see if the
presence of surfaces necessitates the introduc-
tion of new critical exponents.

Fisher' has pointed out that the specific heat,
which for R bulk system displRys R shRrp tlRIlsl-
tion at a temperature &„will become rounded to
a maximum at a temperature T shifted from T,.
The extent of deviation from bulk behavior de-
pends on the smallest confining dimension and de-
fines a region of rounding. The maximum value
at the specific heat will also depend on this con-
finement in a way which depends on the behavior
of the specific heat in the bulk. These qualita-
tive statements are summarized in the following
equations:

characteristic specific-heat exponent & is zero.
Since the length scale at the transition is set

by the correlation length which diverges with a
characteristic exponent &, one would expect the
exponents ~ and 0 to be related to &; specifically,

1/9 =v,

1/A = v.

(4)

(5)

An alternative to Etl. (5) has also been conjec-

turedd

1/A & 1/8 = v. (6)

Liquid helium at the ~ transitions is a good can-
didate to check on these predictions because of
the ease with which one can achieve confinement
in rather small dimensions. Indeed, experiments
with helium films formed on various substrates
or for helium confined in pores or packed pow-
ders have shown that the superfluid transition is
shifted in temperature and the specific heat does
lose its characteristic & shape. ' ' There have
been, however, no quantitative verifications, via
the specific heat, of the predictions for critical
behavior. The reason for this has been mainly
that one has not been able to control the confin-
ing geometry in a satisfactory way. In the case
of films one runs into difficulties with capillary
condensation leading to inhomogeneities in the
thickness. " For confinement in packed powders,
the size is too ill defined for a quantitative test.
There have been a number of experiments to ob-
tain R shift exponent A via the determination of
the vanishing of the superfluid density. "" These
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