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ma device. The results of the computer simula-
tion which we have presented indicate that the
size of the "device" plays a role in determining
which DL are stable.
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We derive an approximate solution to the Korteweg-de Vries equation with slowly vary-
ing coefficients for a soliton initial condition. Expressions are given for the amplitude,
position, and velocity, and it is shown that the soliton experiences an irreversible loss
of energy whenever it travels in a slowly varying medium. These results are applied to
an ion acoustic soliton in a nonuniform plasma and are confirmed by comparison with the
results of numerical integration of the differential equation.

The Korteweg-de Vries (KdV) ettuation arises
in the study of various weakly nonlinear disper-
sive systems, e.g. , shallow-water waves' and
ion acoustic waves in plasmas. ' Great interest
in the KdV equation has been generated by the
exact solutions found by Miura, Gardener, and
Kruskal. ' In many physical systems it is com-
mon that the medium in which a disturbance trav-
els varies, e.g. , the depth of a channel in which
water waves travel is not constant, or the unper-
turbed plasma density in which an ion acoustic
wave propagate s is a function of position. We
therefore present here the results of a theoreti-
cal and numerical study of a KdV soliton in a
slowly varying medium. The theoretical tech-
nique is based on a perturbation expansion of the

variable-coefficient KdV equation where we as-
sume that the scale on which the soliton varies
is short compared to that on which the medium
varies. Other attempts" have been made to pre-
dict the behavior of a KdV soliton in a slowly var-
ying medium but these are in error. Our solution
differs from those of previous workers in that it
shows for the first time that a KdV soliton loses
energy whenever it travels in a slowly varying
medium, independently of how the medium varies.

We consider a soliton governed by the KdV equa-
tion with slowly varying coefficients,

u, +n(T)uu„+ p(T)u„„„=0, n, p&0,

where the coefficients n and P are arbitrary posi-
tive functions of a slow time variable T= ct, with
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e«1. The details of the perturbation theory that
we use are given by Johnson, Whitham, Luke, '
and Grimshaw. ' Here we merely outline the es-
sential steps. We seek an asymptotic solution of
the form

u=u~'&(8, T)+ jul'&(8, T)+ e'ul'}(8, T)+ ~ ~ ~ (2)

where 8 is the phase variable which reduces to
kx- &ut when o. a,nd P a,re constants. Inserting Eq.
(2) into Eq. (1) and collecting powers of e, the
terms of O(e") give

where 6,„ is the Kronecker 0 and

S(')=0, Z(')=-u, (),

~(2) — „() ~~„()u,(~)

ul'} =a sech'p, y = b(6+ 8), (4)

Uppn integration pf Eq. (3) with n = 0, we obta, in
the KdV soliton

[ ~u'"'+~k(1+6 ) 'u"u'"'+@'u '"'] =&'"' a = 3~/ak, b = (~/4Pk')'", (5)

(6)

[-' J (u'l'&)' d 8] = (a'/b) = 0

k(T) = 8„, &u(T) = —6„
and 0 is an arbitrary function of T which was omitted by Johnson but is of crucial importance because
its contribution causes the soliton to lose energy. From Eqs. (6), it follows that k, = —+„=0 so that k
=ko =const. Integrating Eq. (3}for n= 1, we obtain

(,) u(') 8u+= (ytanhq —1)—,(4(l+ y) —[4p'+ 6p —exp(- 2y)+D] tanhyj,
(d 4mb'

where D is an arbitrary function of T. Inserting Eqs. (5} into Eq. (7}, we obtain

~ = ~,(~ /&, )'"(0/tl, ) '"

(8)

(10)

where the zero subscripts denote initial values. Through the use of Eq. (9}, it is noted that a, b, and
8 are now completely determined. To determine 8, we integrate Eq. (3) with n= 2 to obtain

Z' pl
8= R(b '-b, ') + J a)[ f (b -2/2(ob')dT"]dT',

where we have assumed that at t=0, the medium does not vary and the initial disturbance is a pure sol-
itpn so that br ——6=Or = 0. The arbitrary function D in Eq. (8) can be obtained from Eq. (3) with n = 3,
but we do not present the result because D does not play a role in the results of interest here. From
Eqs. (4) and (8), it may be verified that (

au~'/ul'})«1 if
~
p)&1 and

2b ~ t y 2« 1 g= ' dt« 1.
2(db

The first inequality of Eqs. (11) states that the medium must vary on a time scale long compared to
that on which the soliton varies. The second of Eqs. (11) requires that the fractional energy loss of the
soliton be small [ see Eq. (19)]. The present expansion is therefore useful near the soliton peak if Eqs.
(11) hold.

Using Eqs. (4), (6), (8), and (10), we find to O(e} the solution

where

(o) ( )— (i2)

u, =a(1- g) sech'[(1 —g)'~'y],

u~= (- ab, /2&ub')(1+ 2p+ —,'[exp(- 2') —4y —4'' -D] tanhp) sech'y,

(i3)

y = b [k,x —J &u( 1 —$)dt+ 2(b ' —b, ') ], (15)
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a,nd $ is defined in Eqs. (11). In Eq. (12), we
have separated the disturbance into two parts:
(a) u„which contains u&ol and the portion of eu~'l

which does not vanish if the medium ceases to
vary; u, has the form (sech') of a soliton as well
as the correct soliton relationship between the
amplitude and width (which va. ry slowly when the
medium varies); and (b) u„, which is generated
when the medium varies (b, g0) but vanishes af-
ter the medium ceases to vary (b, =0). We there-
fore designate u, and u„as the "soliton" and "sol-
iton distortion, " respectively. Since the maxi-
mum amplitude u of the disturbance occurs at
can=0, we ea.sily obtain from Eqs. (12)-(15)

u = a(1 —$ —b &/2(ub'),

=k, '[J ~(1 —$)dt- gb '-5, ')),

dx„/dt=ko '[(u(1- $)+ b, /2b'],

(16)

(17)

(18)

where x is the position of u . The most striking
feature of our solution is that because of the quan-
tity $, the soliton part of the disturbance loses
energy whenever it travels in a slowly varying
medium in spite of the fact that Eq. (1) contains
no dissipative terms. This is clear if we calcu-
late the soliton energy,

E,= t u 2dx=(4ao'/3kobo)(l- 3$/2), (19)

where we ha.ve used Eq. (7). Because we have as-
sumed a, p) 0, it follows from the definition of $

given by Eq. (11) that $) 0, and it is therefore
evident from Eq. (19) that the soliton energy con-
tinually decreases when b, +0, independently of
the sign of b,. Moreover, this energy loss is ir-
reversibLe in the sense that if a and P slowly
change from their initial values a, and P, but then
slowly revert to their initial values, the soliton
does not revert to one with the initial amplitude,
but rather one with an amplitude smaller by a fac-
tor of 1 —$. From the results of numerical inte-
gration of Eq. (1) discussed subsequently, we find
that the lost energy appears in the region behind
the soliton. The present expansion is not useful
to calculate the structure behind the soliton be-
cause the condition i pi(1 for our expansion to be
valid is not satisfied.

In order to verify the predictions of this theory,
we have numerically integrated Eq. (1) for the
case of an ion acoustic soliton. Using a deriva-
tion similar to that of Nishikawa and Kaw' but
with a different identification of variables, it can
be shown that Eq. (1) governs one-dimensional
nonlinear ion acoustic waves in an inhomogene-
ous plasma if a(t) = [N, /N(t)]'j', P(t) =N, /2N(t),

u(x, t) = [N(t)/No]'™[n,(x, t)/N(t) —1], where x and
t represent k~'- co~,.t' and k~', respectively
(x' and t' are the true distance and time varia-
bles, and AD

' and m~,. are the Debye length and
ion pla, sma frequency), and n, and .A' a.re the ion
density and unperturbed ion density, respective-
ly. Using a finite-difference scheme, Eq. (1)
was integrated for a density profile given by

N(t) = —,1N, + N, + (N, -N, ) tanh[(L- t,)/T]j, (20)

where t, is chosen such that t, » v in order that
N=N, at t=0 (see Fig. 1). Computations were
carried out for several values of final- to initial-
density ratios N, /N„density-profile time scales
7, and initial soliton amplitudes go. At t=0, the
soliton is given by u, =a, sech'(b, k,x), where b,k,
is determined from ao from Eqs. (5). Typical re-
sults for an increasing density profile are shown
in Fig. 2. It is evident that the medium is undis-
turbed ahead of the soliton and that a shelf like
formation develops behind the soliton during the
time that the medium va. ries (an oscillatory tail
is also present behind the shelf but its scale is
too small to be shown on Fig. 2). However, for
times sufficiently large such that the medium no
longer varies, the shelf changes shape as it lags
behind and eventually separates from the soliton.
The shelf was also mentioned by Leibovich and
Randall' and has been predicted in the theory of
Kaup and Newell. " It is of interest to note that
an appreciable time lag exists between the time
at which the medium begins to vary appreciably
and the time at which the shelf is formed.

A comparison of the results of perturbation the-
ory with those from numerical integration is giv-
en in Fig. 3 which shows the maximum value of
u at time io (the time at which N varies most rap-
idly) and at large time (L- L, » 7) vs the time
scale 7 on which the density profile varies. The
curves obtained from numerical integration were
constructed by taking the peak values of u at t = I;,
and at large t from curves such as those in Fig.

5NO—

r- ~W",
0 l5 50 45 60

t
75 90 I05

FIG. 1. Density profile given by Eq. (20) with N| = GNp,

tp= 45, and T= 15.
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FIG. 2. Results of numerical integration of Eq. (1)
or an ion acoustic soliton with initial amplitude ap = 1

for the density profile of Fig. 1. The curves are dis-
placed vertically for clarity.

2 for various values of 7; The curves from per-
turbation theory were obtained from Eq. (16).

Also shown on the abscissa are the corre d'orrespon ing
values of 2b, /~b' and $, from which it ' clear
that the perturbation result is an increasingly
better approximation as Eqs. (11)are more close-
ly satisfied, i.e., as the density varies more
slowly. For the case of large time, Eq. (16)
gives u =a(1- $), and for comparison we also
show Johnson's result' u =a. Our results are
consistently smaller than this because of the en-
ergy lost by the soliton.
We have also compared the position and velocity

of the maximum of the disturbance given b E
( ) and (18) with the results of numerical inte-17

i n y qs.

gration. Again good agreement is found when
Egs. (11) are satisfied. Finally, by calculating
f "„u'dx for the case of la, rge time where the
trailing structure is separated from the soliton,
e.g. , (= 180 in Fig. 2, we have verified that the
energy lost by the soliton is contained in th'

trailing structure.
This vrork was supported by the National Sci-

ence Foundation.
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FIG 3 MMaximum value of u for an ion acoustic soli-
ton with initial amplitude ap = 1 for the density profile
of Eq. (20) with Ng= 5Np.
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