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stant values of v less than 1+t,', dr/dt ((—1
+ &/2) [slope a.ssumption in the tra, nsition region],
and (iv) every curve beginning in the transition
region with t) t, and having r)(-1+a/2) reaches
I [convexity]. At any point along our geodesic
with t) to and v (1+to', we must, by (i) and (ii),
have r )(- 1+e/2), a,nd so, by (iii), v (0. Thus,
v ~1+to, once achieved, is maintained; while
by hypothesis it is achieved. We conclude that
r' )(- 1+& /2) along some final segment of our geo-
desic, whence, by (iv), our geodesic reaches I.

We note, finally, that these cases exhaust the
possibilities for null geodesics. Hence, all null
geodesics reach I, completing the demonstration
of weak asymptotic simplicity.
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We study the steady-state dynamical behavior of a set of torsion-coupled pendula in the
presence of damping, fluctuating thermal torques, and constant applied torque. For
small applied torque, the average angular velocity of the pendula at low temperature is
associated with the motion of thermalized sine-Gordon solitons and as the torque is in-
creased the velocity response becomes strongly nonlinear. These results can be Used to
describe nonlinear response in Josephson transmission lines and weakly pinned one-di-
mentional charge-density —wave condens ates.

Recently there has been growing interest in
condensed-rnatter systems characterized by non-
linear wave equations which possess solitary-

wave or soliton solutions. ' ' The equilibrium
statistical mechanics of these systems has prov-
en to be very interesting. "' In this Letter we
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examine the problem of the nonequilibrium sta-
tistical mechanics of a ring of torsion-coupled
pendula in a gravitational field which undergo
Brownian motion in the presence of damping and
are driven by external applied torque. " We use
a transfer operator technique familiar from equi-
librium statistical mechanics"'" to solve the
Smoluchowski equation and find the average
steady-state angular velocity, ~, of the pendula
as a function of temperature and applied torque.
This average angular velocity is a physically rel-
evant quantity in several contexts; e.g. , it is
the mean thermal noise voltage" across a Joseph-
son transmission line, ' the average dc current
density in a weakly pinned one-dimensiona)
charge-density-wave (CDW) condensate, ' etc.
We find that for small applied torques, is pro-
portional to the number of thermally activated
solitons present in the system. As the applied

torque is increased toward the value necessary
to overcome the restoring force of the gravita-
tional field, rises sharply and is a nonlinear
function of the torque. This behavior is quali-
tatively similar to that found'4 for the current
density as a function of applied electric field in
materials believed to possess pinned CDW's.

Consider a system of N (N»1) simple pendula
of mass m and length I whose points of support
are equally spaced on a large supporting ring.
Each pendulum is coupled to its nearest neigh-
bors by a torsion spring (torsion constant R') and
is free to move only in the vertical plane con-
taining its point of support and the center of the
support ring. The motion of each pendulum can
thus be described by an angular coordinate ~

(measured from the vertical) and an angular ve-
locity 0 —= d0/dt. The classical Lagrangian for
this system in a gravitational field can be writ-
ten as (L = &- U):

L = Q (—,
' ml 8 —mgl(1 —cos0;) ——,'R'(0;+, —0;)'+ v0;),

where g is the acceleration due to gravity, and & is a constant torque applied to each pendulum. The
ring configuration for this system means 0N+, —0,."

In terms of angular momenta, p; =—ml 8;, we write the Langevin equation of motion for the ith pen-
dulum:

=X(0., „0,, 0,„)-qp, +F,(t),
where

R(0; „0;,0;+,) =K(0;+,+0;,—20;) -mgi ging; + &= —& U(0, . . ., 0~)/&0;.

(2)

The last two terms in Eq. (2) represent phenomenological damping and fluctuating "noise" torque, re-
spectively. The noise is assumed to be thermal and to act on each pendulum independently so that

(F;(t))= 0 and (F;(t)F,(t+t')) = 2ml .0 TT15;,.6(t').
In the steady-state situation, the average angular velocity of each pendulum will be the same, i. e. ,

(0;)= 2 for all i. To calculate 2, we start from a multidimensional Fokker-Planck equation" for the
phase-space distribution function P(0„.. ., 8N,'p„.. .,p„;t):

spa

Because of the nonlinea, r part (sin0;) of the torque E, Eq. (3) is extremely difficult to solve in general.
However, in the limit when the damping constant, g, is large" compared to the characteristic fre-
quency of the pendula, ~,= ~g/1, we can use the method of Kramers" to integrate over the momenta
in Eq. (3), yielding a multidimensional Smoluchowski equation for the coordinate distribution function
v(0„.. ., 0~; t):

2 2 N

(4)

where U(0„.. . ,8„)is the total potential [see Eq. (1)). We introduce the following definitions for con-
venience: P—= (k T) ', y—= 2Prngl, d=—(z/mgl)'i', and y—= &/&, with 7, = rngl. The dimen-sionless param-
eter y is the ratio of the gravitational potential barrier height to thermal energy, d is a characteristic
length scale (the width" of the soliton excitation" measured in numbers of pendula), and T, is the
critical torque required to give a nonzero average angular velocity at T = 0.
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To find the average steady-state angular velocity, P= (0;), we single out one of the angles (say 0, )

and integrate Eq. (4) over all other a.ngles to obtain an equation for the single-particle distributionfunctions�(0,
) = f d0, . . . fd0, , f d0, +„.. . f d0„o(0'„.. .,0„;t).In the steady state we have B 0'(0„.. ., 0„)/

8 t = 0 and, in particular,

B cr(0, )/Bt = 0—= —Bw/B0, ,

where w is a constant diffusion current. Since 0'(0;) is periodic [0 (0, + 2m) =v(0, )], we consider the in-
terval 0 (0,. - 2m and normalize o'(0, ) by the condition f, d0, cr(0, ) = 1. With this condition, w is the
average time required for 0; to evolve by 2w, hence Cu= (5,) = 2mw

In order to solve Eq. (4) we write &(0„.. ., 0„)in fa.ctored form as

&(0„,0A) =P(0i, . ,0~)k(0„., 0 )N,

where p(0». . .,0 A) = exp[- pU(0». . .,0„)I, J is the zero-torque (&= 0) equilibrium distribution func-
tion and k(0». . ., 0&) contains the effects of the external torque and remains to be determined. We
make the Ansatz" k(0„.. ., 0&) =k(0,)k(0,). . .k(0~), where k(0;) is a periodic single-particle function.
This allows us to integrate Eq. (4) over all angles except 0; with the aid of a tra, nsfer operator tech-
nique. Using Eq. (5) we find

w = (cu,'/q)o'(0, )[y -By(8;)/88, ],
where y(0) =— (2/y) Ink(0). The single-particle distribution function can be expressed as

c(0) = Z, . '" "i~ (0) i' (7)

(8)

where &, and ~, are the eigenvalues and associated engenfunctions of the transfer integral operator;

f d0, exp[ 2y v(-0,„,0;)]~'~(0;)= exp[ ~ay~ J~'.( 0;.,),

v(0,„,0,) = —,' [d'(0,
„

-0;)' —cos0; —cos0;
„

-y (0,) -y (0,„,)].

In the thermodynamic limit (N-~), only the
ground state is important in Eq. (7) and thus
v(0) = IC,(8)l' (normalizing so that &,= 0). This
result, together with Eq. (6), yields the dimen-
sionless average angular velocity 0 = Cup/&u, '.

A=4m'yf J v '(0)d0] '.

The ground-state eigenfunction contained in v(0)
[= IC'0(0) I'] is determined self-consistently by
Eq. (8) and the first integral of Eq. (6):

21I' d0 i 1 e d01t
3 (0) =X)0 —2+

(0 i) (0e)

In the strong-coupling limit, d becomes large
and the Fredholm integral equation (8) for the
ground-state eigenfunction 4,(0) can be approxi-
mated' ' ' by a. differential equation for a, related
function (,(0) = exp(4 y[cos0 +y(0)]]@,(0):

[- (1/2p)(d'/d0') —cos0 -X(0)]g(0)= eg(0), (ll)
where p= (-,'yd)'. Equation (ll) has the form of
Schrodinger's equation (k = 1) for a particle of
"mass" p, in a periodic potential. The solutions
have the Floquet form, $„(0)=exp(ik0)u„(0) with

i +~(0+») =&&(0), and the eigenvalues form bands
in k space. We need only the lowest state, cor-
responding to the bottom (k = 0) of the lowest
band.

In Fig. t. we plot the average angular velocity
0 as a function of the torque g, for several val-
ues of the temperature (measured in units of
2m@i, kBT=y '), from the self-consistent solu-
tion of Eqs. (10) and (11). At low torque 0 is
linear in the torque and proportiona. l to the num-
ber of thermally activated solitons (see below);
at high torque the current is again linear as the
pendula are driven by the torque independent of
the strength of the gravitational field, mgl, and
the coupling, ~. As the temperature is raised
0 increases rapidly as the number of solitons in-
creases. At fixed y ', increases in X lead to
nonlinear evolution of O.

In the limit X«1, the y dependence of C,(0) may
be neglected and 0 becomes linear in y [Eq. (9)].
The function y(0) may be neglected and Eq. (11)
becomes the Mathieu equation. " From the as-
ymptotic properties of the ground-state Mathieu
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FIG. 1. The average angular velocity vs torque.
The average angular velocity is calculated from the
self-consistent solution of Eqs. (10) and (11) for three
choices of the temperature (measured by y ~). Inset:
0 vs y at fixed temperature {y ~=1) as the strength of
the interpendulum coupling (measured by d~) is in-
creased from 0 to d =40. The strong-coupling approxi-
mation [Eq. (11)] is in error by about 20' for d =0.4
but very accurate for d =2,5 and 40.

IO 2

function, we find that at low temperatures

=2m — 0 exp —:1 ——

(E, »k~T; y«1), (12)

where Eo=Bmg~d is the rest energy of the sine-
Gordon soliton. ' The sine-Gordon soliton is a
solution to the equation of motion for the undriv-
en system in the strong-coupling limit (d»1).
The equilibrium (zero-torque) density of solitons
(plus antisolitons) is given by"

n(&) =2(2/vr) 'd '(E,/kBT) 'exp(-E, /kq&).

Thus we see that in the limits«1 and Eo/kqT
» 1, Q is proportional to n(7'), the density of sol-
itons.
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We propose an iterative nonbnear solution to the general potential scattering problem
in quantum mechanics. It is illustrated by the case of Nz localized scatterers of arbi-
trary strengths V~ located at arbitrary points B,. in an. infinite lattice, for which we obtain
the complete set of bound and scattering states. The numberical evaluation is estimated
to take 0(N&) steps as opposed to O(NI ) steps by conventional matrix inversion.

Scattering theory, as traditionally expressed in the derivation and solution of the equation'

g(r) = re(I i(r) —f G~ Oi(r', r) V(r')g(r')d r'

with g~= I for E in the continuum and 0 for bound states, is generally intractable unless the potential
is weak or has some high symmetry. For an arbitrary potential where the usual' expansions are inade-
quate and for which no simplifying symmetry is ascertained, I propose the following nonlinear, non-
perturbative approach. The idea is to solve for the contribution from a small neighborhood AQ of each
individual point where V(r ) differs from zero, one point at a time. For example, starting at a specif-
ic ro one would first consider

g(r) =) ' (r) —G ' (r r) V(r )g(r )AQ

which has the explicit solution

(-, )( ) ( ) (,)( )
anV(r, )G~"'(r„r)y"'(r,)

(2)

and use this as the input at the next point r,
r,)G I,I(r„r)~I' I(r

(3)

in which there appears a new Green's function G 'i constructed with the eigenfunctions (2) and thus in-
corporating V(r, ) ~ This procedure is then iterated, but it presents some difficulties. In addition to the
scattering states there may appear bound states which must be computed separately, If we proceed to
the limit 40-0, the number of points at which we must iterate becomes infinite. A proper formula-
tion undoubtedly involves differential quantities such as &g/& V at each point. Finally, the ultraviolet
divergence of G(r, r) in two, three, or more dimensions necessitates a high-energy cutoff, which may
be allowed to go to infinity only at the end of the calculations. At the present time I do not know how to
circumvent these difficulties, which appear to provide many opportunities for further investigation.
Nevertheless the solid-state analog to this problem is completely and explicitly solvable by such an
iterative technique, as I now show.

We consider a simplified case, where electrons are confined to a single energy band of a solid with
N = atoms, with N~ arbitrarily placed localized scatterers diffracting the electron waves. We shall
obtain the exact eigenstates by a succession of N~ rotations of the Hilbert space. The model incorpo-
rates two important simplifications: First, the finite bandwidth of Bloch energies e„confined to a
single band ensures that the Green's functions are free of ultraviolet divergences, obviating the need
for an artificial cutoff. Second, the discrete nature of point scatterers enables us to terminate the
process after a denumerable N~ steps.

We recall the few facts and the notation which are a1most all the reader will have to know of solid
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