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An example is given of a space-time which satisfies the conditions for asymptotic re-
gion is not "as large" as that of Minkowski space-time.

There is available in general relativity an ele-
gant and useful treatment of isolated systems,
i.e. , of space-times which possess an asymp-
totic regime similar to that of Minkowski space-
time. This treatment is based on the following
two definitions. A space-Rime M, g,& is said to
be asymptotically simple" if there exists a mani-
fold with boundary, M=MU I, consisting of )VI

with boundary I (the ideal points "at null infinity")
attached, together with smooth I orentz metric
g„and smooth scalar field 0 on M, such that
(I.) on M, g„=Q'g,» (2) at I, 0 vanishes, its
gradient is nonzero and null, and its second de-
rivative' vanishes; (3) every maximally extended
null geodesic in M has, in M, two endpoints onI.
Weak asymptotic simpLicity" is defined similar-
ly, but with the third condition replaced by anoth-
er: (3') There exists a neighborhood of I in M
which is g, & -isometric to a neighborhood of the
boundary of some asymptotically simple space-
time.

The role of the first two conditions above is to
impose the correct local asymptotic behavior on
the gravitational field, i.e., the correct behavior
as one recedes from the isolated source in a giv-
en null direction. The role of conditions (3) and
(3'), by contrast, is to fix the global asymptotic
behavior. They are intended to ensure that the
asymptotic structure be globally the same as that
of Minkowski space-time; that in particular the
boundary I be as "large" as the boundary appro-
priate to Minkowski space-time. The distinction

between 3 and 3' is the following. Condition 3
is the stronger: It in addition imposes severe
nonasymptotic global conditions on the space-
time. This is the key condition, for example,
in proving that an asymptotically simple space-
time must possess a Cauchy surface, that it must
be topologically R4, etc. Condition (3'), on the
other hand, retains only the purely asymptotic as-
pects of condition (3), for it retluires essentially
that in the asymptotic regime, i.e. , in some
neighborhood of I, the space-time be indistin-
guishable from an asymptotically simple one.
Thus, for example, Minkowski space-time with
the point at the origin removed is weakly asymp-
totically simple but not asymptotically simple.

That conditions (3) and (3') do, in fact, capture
the idea that the space-time must have the global
asymptotic structure of Minkowski space-time
seems to have acquired the status of a "folk the-
orem. " That is, although such a result has, ap-
parently, never been claimed explicitly in the lit-
erature, it has implicitly entered various defini-
tions, conjectures, and discussions utilizing as-
ymptotic structure. We shall here show that, by
what seems to be a reasonable reading, this "folk
theorem" is simply false. More precisely, we
shall prove this:

Theorem. Consider Minkowski space-time
with the causal future of the origin removed [i.e.,
retain the region given, in the usual coordinates,
by «(x'+y'+ z')"']. This space-time is weakly
asymptotically simple.
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It follows in particular from the theorem that,
while of course Minkowski space-time with its
usual boundary satisfies the conditions for weak
asymptotic simplicity, so does Minkowski space-
time with only a portion of that boundary (namely,
that portion which lies outside the causal future
of a, point of the space-time).

A few examples will illustrate the relevance of
this theorem to various applications of asymp-
totic structure. A space-time is said to possess
a black hole if it is weakly asymptotically sim-
ple and the past of future null infinity I' is not
the entire space-time. This definition now ac-
quires an ambiguity: Does one wish to demand
that the past of I+ be not the entire space-time
for some I' which makes the space-time weakly
asymptotically simple, or for all such I'P If
the resolution is "for some I'," then Minkowski
space-time would possess a black hole. If "for
all I+," then Minkowski space-time with an as-
ymptotic portion of the null cone of the origin re-
moved possesses a black hole (for every I' which
makes this space-time weakly asymptotically
simple must, of course, be connected). A space-
time is said to be future asymptotically predic-
table' if it is weakly asymptotically simple and
possesses an achronal slice S whose future do-
main of dependence in M includes I '. Again,
the nonuniqueness of I' leads to an ambiguity for
which there seems to be no appropriate resolu-
tion. The Bondi-Metzner-Sachs group, if de-
fined' as the group of diffeomorphisms on future
null infinity I' of a weakly asymptotically simple
space-time which preserve the intrinsic geomet-
ri.cal structure of I', would now, depending on
the I', be several different groups, some of
which have no supertranslations. One version of
cosmic censorship conjectures' that the maximal
vacuum evolution of any asymptotically flat initial-
data set is weakly asymptotically simple. By a
slight modification of the argument of the theorem,
one sees that this conj ecture is now true but it
now does not seem to say cosmic censorship.

It is easy to modify conditions (3) and (3') so
that they do indeed demand the global asymptotic
structure of Minkowski space-time. Set n'= &'0,
so that, by condition (2), n' is the field of null
generators of I. It is further consequence of con-
dition (2) that the completeness or incompleteness
of the vector field n' on I is gauge invariant, i.e. ,
is preserved by any new choice of the conformal
factor 0 subject to this condition. The global as-
ymptotic structure of Minkowski space-time is
characterized by the structure of its usual bound-
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FIG. 1. A space-time with boundary I, in the v-I;

plane. The internal, transition, and external regions,
as well as the curves of constant v, are shown.

transition

ary I, which in turn is characterized by its
"shape, " S'&& R, and its "size, " completeness of
rs' on I. This suggests a definition: A space-
time M, g,b will be said to be asymptotically flat
(at null infinity) if there exists a manifold with
boundary, lV1=2IIU I, .consisting of M with boundary
I attached, together with smooth Lorentz metric
g, b and smooth scalar field 0 on M, such that
(1) on M, g„=Q g,» (2) at I, 0 vanishes, its gra, —

dient is nonzero and null, and its second deriva-
tive' vanishes; (3") I consists of two parts, ' I'
and I, each S'&«R with the ' B's" the null gener-
ators, and on each of which v' is complete. That
is to say, the ea.rlier condition (3) or (3') is re-
placed by (3"). The definition refers only to the
asymptotic, and not to the internal, structure of
the space-time. Thus, asymptotic flatness,
which implies weak asymptotic simplicity, serves
as its replacement, e.g. , in the above examples.
Instead of asymptotic simplicity, one can now
just impose where appropriate, in addition to as-
ymptotic flatness, further internal global condi-
tions on the space-time, e.g. , that it be a~, that
it admit a, Cauchy surface, that condition (3)
above be satisfied. As examples, Minkowski
space-time and the Schwarzschild space-time
are asymptotically flat, while the space-time of
the theorem is not, for completeness there fails.
More generally, by considering only I' or only
I in (3"), one could define future or past asymp-
totic flatness.

Finally, we outline the proof of the theorem.
Consider Minkowski space-time with its flat met-
ric g„and a constant, unit, timelike vector field

Consider the region of this space-time given
[in the usual coordinates, with &, the gradient of
t and r = (x +y +z )'~ ] by & « r+ 1 a-nd & (0,
i.e. , the past light cone of the point labeled (+ 1,
0, 0, 0)„with its "top chopped off" (Fig. 1). The

204



Voj.UMz 40, NUMBER 4

null boundary I is given by t= -x+1(0. Let
the metric on this manifold with boundary be g,b

=q,b+ (1 —v')t. t„where ~ is a smooth positive
scalar field on M. Thus, large & corresponds to
light cones "opened out" about &'; small ~ to
"closed in." We wish to choose this field v such
that v = 1 (i.e. , g„=q,&) in a neighborhood of I,
and such that every future-directed null geodesic
in the space-time, not a generator of I, has fu-
ture endpoint on I. The demonstration of the ex-
istence of such a &, we claim, will complete the
proof of the theorem. To see this, first recall
that, for the usual conformal completion of Min-
kowski space-time, its top part with its conform-
ally scaled metric can be isometrically embedded
in Minkowski space-time, with I' the past null
cone of a point. Hence, the space-time above
will represent the top part of the space-time of
the theorem, with its boundary at future null in-
finity attached 2nd with the metric so modified
outside a, neighborhood of I that condition (3),
i.e. that asymptotic simplicity ls satisfied.

The idea of the proof is simply to choose v to
increase as ~ approaches zero in order to open
out the light cones, and thus force the null geo-
desics away from the central region toward I.

Divide the space-time into three regions, as
shown in the figure. In the external region,
which includes a neighborhood of I, set v = 1. In
the internal region, set &= &,=t '. Between the
internal and external is the transition region, in
which ~&1, and whose boundaries are to be con-
vex inward and to approach I tangentially as t-0.
Choose & in this region to be spherically symmet-
ric, such that ~ «1, »/e~(0, such that the ~-t
slope of the curves of constant v approaches —1
as t-0, and such that, at every point of this re-
gion, either ~&1+&' or ~ rem/s—r», . (This
latter condition is accomplished by choosing ~,
for constant ~ and increasing ~, to decrease suf-
ficiently rapidly that the second inequality is sat-
isfied, until & has decreased below 1+&', at
which point the first inequality is satisfied, and

so v can decrease more slowly to its final value
of 1, )

We shall show that, with these conditions on v,
every future-directed null geodesic in our space-
time reaches I. Parametrize such a geodesic by
the (not necessarily affine) parameter t, and de-
note by a dot, applied to a function defined along
the curve, its rate of change with respect to this
parameter. Then, for example, nullness implies
j ' ( v'. Set L= r'(1 —& Y''), a, non-negative "ef-
fective squared angular momentum" along the

L = 2v 9 (8 v/8 y)L. (2)

We consider various classes of null geodesics as
follows.

(1) If the geodesic remains entirely in the ex-
ternal region, or emerges from the transition in-
to the external, then it reaches I. This follows,
since the space-time is Qat in the external re-
gion, from convexity of the boundary of the transi-
tion region.

(2) If r is positive at any point along the geodes-
ic, then that geodesic reaches I. Since the right-
hand side of (1) is non-negative, positivity of r
at any point of the geodesic implies that thereaf-
ter i)cv, for some positive constant c. There-
fore, the geodesic could not thereafter remain in

the internal region, for there &= &o=~ 2, whence
the time integral of cv to &=0, must reach the
transition region, where x & 1, and so must have

x & 1 thereafter, and so must reach I.
(3) If L = 0 [i.e., the geodesic is radial, a con-

dition which, by (2), is maintained along the geo-
desic], then that geodesic reaches I. Set, with-
out loss of generality, x(0, so that I-=0 implies
i=-v. But now, since i~-1, the geodesic, if
it leaves the external region at all, must enter
the internal. But in the internal region, the time-
integral of x= —& diverges, whence the geodesic
must pass through the origin, and so attain posi-
tive i, and so, by item (2), reach I.

(4) If the geodesic satisfies» 1+~' along some
final segment, then it reaches I. Let, without
loss of generality, i (0 and I & 0, so that, since
the right-hand side of (2) is non-negative, L & Lo,
for some positive constant L„along this final
segment. But now, by hypothesis and the choice
of & in the transition. region, the right-hand side
of (1) exceeds x ' &g„whence the time integral
of this right-hand side diverges. But this in turn
means that i must somewhere become positive,
and so, by item 2, the geodesic must reach I.

(5) If the geodesic fails to satisfy v& 1+t 2 eve-
rywhere along some final segment, then that geo-
desic reaches I. Setting, without loss of gener-
a.lity, L & 0, we have by (1), for some positive e,
j»(-1+a)v along some final segment. Choose
&, sufficiently near zero that (i) & - &, is within
this final segment, (ii) (- 1+e)(1+t,') & (- 1+e/2),
(iii) for & & &, we have, along the curves of con-

geodesic. The null geodisic equation in the metric
g, b then yields

(v '$)'= ~ '(v -~ 8v/ay)L,

from which there follows immediately
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stant values of v less than 1+t,', dr/dt ((—1
+ &/2) [slope a.ssumption in the tra, nsition region],
and (iv) every curve beginning in the transition
region with t) t, and having r)(-1+a/2) reaches
I [convexity]. At any point along our geodesic
with t) to and v (1+to', we must, by (i) and (ii),
have r )(- 1+e/2), a,nd so, by (iii), v (0. Thus,
v ~1+to, once achieved, is maintained; while
by hypothesis it is achieved. We conclude that
r' )(- 1+& /2) along some final segment of our geo-
desic, whence, by (iv), our geodesic reaches I.

We note, finally, that these cases exhaust the
possibilities for null geodesics. Hence, all null
geodesics reach I, completing the demonstration
of weak asymptotic simplicity.
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iBy a space-time we mean a smooth connected four-

manifold with a smooth, time-oriented metric of Lo-
rentz signature.
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We study the steady-state dynamical behavior of a set of torsion-coupled pendula in the
presence of damping, fluctuating thermal torques, and constant applied torque. For
small applied torque, the average angular velocity of the pendula at low temperature is
associated with the motion of thermalized sine-Gordon solitons and as the torque is in-
creased the velocity response becomes strongly nonlinear. These results can be Used to
describe nonlinear response in Josephson transmission lines and weakly pinned one-di-
mentional charge-density —wave condens ates.

Recently there has been growing interest in
condensed-rnatter systems characterized by non-
linear wave equations which possess solitary-

wave or soliton solutions. ' ' The equilibrium
statistical mechanics of these systems has prov-
en to be very interesting. "' In this Letter we
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