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and methods of analysis with respect to 7+ and
7~ makes our results much more reliable, We
believe that we have convincingly demonstrated
the ability of differential studies of 7* and 7~ in-
elastic scattering to provide an insight into the
neutron/proton or core/valence structures of ex-
cited nuclear states which has hitherto before not
been possible, The pions may now be considered
as beginning to deliver on their promise as a new
and powerful tool in the study of nuclear struc-
ture!
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Long-Range Absorption in the Heavy-Ion Optical Potential
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A long-range imaginary optical potential approximating the effects of quadrupole Cou-
lomb excitation is derived in closed form. An analytical closed form for sub-Coulomb
elastic scattering is obtained by inserting this potential into a weak-absorption model.

A long-range absorption in the heavy-ion opti-
cal potential due to Coulomb excitation of a low-

lying collective quadrupole state has been the sub-

ject of some interest recently. An experimental
specimen is the elastic scattering data of 90-
MeV 20 on '**W.! These data show a Fresnel
pattern damped below the Rutherford cross sec-
tion that is well reproduced by a coupled-chan-
nels calculation which includes Coulomb excita-
tion of the 111-keV 2% rotational state in %W,
An alternative theoretical description is the

20

construction of an optical-model component aris-
ing from two-step contributions to elastic scatter-
ing. This can be done using the Feshbach pro-
jection-operator formalism.? In this framework,
Love, Terasawa, and Satchler have recently ob-
tained a formula for a long-range imaginary po-
tential (which we will refer to as the LTS poten-
tial) by making the approximation of using plane-
wave intermediate states along with a classical
correction for the Coulomb braking.® The poten-
tial obtained is dominantly negative imaginary,



VoLUME 40, NUMBER 1

PHYSICAL REVIEW LETTERS

2 JANUARY 1978

and, apart from finite-size corrections, has a
radial dependence of R "%[1 - (Z,Z,e?/RE ;)] 1~

In this Letter we show that it is possible to de-
rive a more exact expression for this long-range
imaginary optical potential by making use of
Coulomb-distorted scattering states and a Cou-
lomb-distorted Green’s function. The result
shows some interesting differences from the LTS
potential. Furthermore, we obtain an analytical
closed form for the differential elastic cross sec-
tion below the Coulomb barrier based on a weak-
absorption model.

The potential component to be evaluated may be

2 . ” N
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written®
Vir,v")=Vi@)G,lr, ') Vi(»'), (1)

where G, is the Green’s function for the inter-
mediate 2* state, and V;, V; are the quadrupole
operators connecting ground and excited states,
i.e.,

41Z,e[ B(E2)4]V?
5V5

and likewise mutatis mutandis for V;. A partial-
wave expansion of G, may be made in coordinate
space

Vilr')= o E Yo', (2)

(3)

where Fu(r.) and Hp(r,) will be taken to be the regular and outgoing boundary Coulomb wave functions,
respectively, One then obtains a nonlocal, /-dependent contribution to the optical potential
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A “trivially equivalent local potential”® may now be defined in perturbation theory:
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Recalling that

Hilv5) =G (v 5) +iF (v ),
the local potential takes the form
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Notice here the clean separation of the real and imaginary parts of this potential,
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Obviously, both real

components will oscillate in sign as a function of 7; this behavior is confirmed in computer evaluation
of Eq. (7). These real components merely serve to put insignificant “hair” on top of the real Coulomb
potential and will not be considered further. On the other hand, we can evaluate the imaginary com-
ponent in closed form.,

For the sake of simplicity in derivation we assume no energy loss in the quadrupole transition., How-
ever, a semiclassical energy-loss factor g,(¢) is applied to our results at the end.? g,(£) is merely
the ratio f,(7, £)/f,(n, 0), where & is the adiabaticity parameter &=4nAE/E 1, and f,(n, £) is the stan-
dard factor of Alder et al.” which we assume for =, In the derivation of our closed form it will be
assumed that either 7 or I= 1+ are large, the usual semiclassical conditions.? Use is made of the
closed forms for the 1/R® Coulomb integrals™* and the Coulomb wave-function recurrence relations.
One obtains finally the long-range imaginary potential for a given partial wave I:
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where u is the reduced mass of the system, Z, is the projectile charge, % is the wave number, and 7
is the usual Sommerfeld parameter,

This potential at first sight seems quite different from the LTS potential. It is specifically ! depen-
dent with 1/R%, 1/R%, and 1/R® radially dependent terms in contrast to the /-independent, dominantly
1/R5, LTS behavior. As -, the 1/R® term dominates in our potential and the ratio of the LTS po-
tential to ours approaches %, The physical correspondence between the approximate LTS potential and
our more exact form may be seen in Fig, 1, The LTS potential crosses our /-dependent potential sev-
eral fermis outside of the classical turning point for the small and intermediate / values of interest.
Paradoxically, due to the / dependence, our 1/R® term has the longest range, while the 1/R? term has
the shortest range.

Our formula has been compared with the results of a computer evaluation of the imaginary part of
Eq. (7) for the case in Fig. 1, and for all partial waves agreement is quite good [to within several per-
cent, except for computationally unstable points where 1/F,(») becomes large]. For the lower partial
waves in above-barrier scattering, one should properly consider nuclear effects both in the wave func-
tions and in the quadrupole operator, but for the present we do not consider these questions, arguing
that our potential is sufficient as it stands to describe the unambiguously long-range part of the imagi-
nary optical potential,

The potential derived is suitable, as it stands, to be incorporated into already existing optical-model
codes, However, we will not pursue this at present. Rather we will consider the effects of long-range
absorption in the case of sub-Coulomb elastic scattering and derive a formula for the cross section in
analytical closed form, This approach turns out to provide the most concise way to compare our po-
tential with the LTS potential, Moreover, studying long-range absorption below the Coulomb barrier
insures that the effect will not be obscured by the short-range nuclear surface absorption which domi-
nates cross sections beyond the critical angle; this is a nuclear analogy to eclipsing the solar disk to
observe better the corona,

Since our long-range imaginary potential is weak and smoothly varying in both » and f, it will pro-
duce a nondiffractive quasiclassical absorptive effect on trajectories passing a few diffuseness lengths
or more outside the nuclear surface. We have extended the strong-absorption formula of Frahn® to in-
clude this superimposed weak absorption, whose contribution to the complex phase shifts is calculated
by inserting Eq. (8) into a perturbative Jeffreys-Wentzel-Kramers-Brillouin (JWKB) integral devel-
oped previously,” We will describe in detail the resulting formula for elastic scattering above the Cou-
lomb barrier in a subsequent publication, Below the Coulomb barrier, our result becomes independent
of nuclear surface parameters other than B(E2)4, and we obtain a simple form for the elastic scatter-
ing ratio to Rutherford cross section

0(8)/0gx(6) =exp[-Kf(6)], (9)

where all the specific parameters of the reaction are contained in the constant

205 2L 2,2 e® J
and f(0) is a universal function of angle:
£(0) = % (cos10)($D%+ 85D°) + (sin0)* [i7D° +(§ ~ ) 0*]
+ {3 +(tank6)?) (sink6)* ~ (tani6) (47 - 160)} (D2 + 2 DS)), (11)

with

, function of angle f(6) is involved. We have plotted

- 1g)-1 Y
D=(1+cscz6)™". the universal below-barrier ratio f(6)/f(9) in

This analytical form for f{8) has the smooth be- Fig. 2(b), This ratio deviates from unity by up to
havior exhibited in Fig. 2(a). 3339 at forward angles, but this will not show up
We may also obtain an expression identical to in most reactions because of the small magnitude
the above for the cross section produced by the of £(8). At intermediate angles of about 40° to
LTS potential except that a different universal 110° the ratio deviates little from unity, implying
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FIG. 1. 7-dependent imaginary optical potential ob-
tained from Eq. (8) compared with the LTS potential
for 80 + 84w at 90 MeV.

excellent agreement for the predictions of the
two potentials, However, beyond 110° (corre-
sponding to LTS cutoff of the Coulomb correction
factor at R,/0.9) there is no theory from the LTS
potential but only a possible prescription, For
the sake of analytical tractability we have merely
ignored the cutoff in the ratio calculation, Clear-
ly, without the arbitrary cutoff LTS predictions
deviate substantially from those of our potential
at very large angles as is illustrated in Fig. 2(c).
Here are plotted cross sections in a realistic
case for which data exist at two angles®: %0
+152Dy at 48 MeV. There is also similar data
for %0 +°2Sm for which o/0 is 0.56(1) at
120°(1ab) and 0,51(1) at 140° as compared with
our calculated values of 0,57 and 0.49, respec-
tively, Multiple Coulomb excitation plays some
role in these cases, with a cross section to the
4* gtates in both cases about } that to 27 state

at 140°, Although the 4* cross section clearly
depletes flux from the 2* cross section, its ef-
fect upon the elastic scattering is less direct,
The excellent agreement between the calculated
cross section and the existing data in these two
cases seems to encourage further experiments
to obtain complete angular distributions in sub-
Coulomb elastic scattering,

The remarkable point of such experiments is
that there is a nontrivial theory with no free
parameters, which can be evaluated without a
computer, that gives specific cross-section pre-
dictions. Indeed, in the situation where the long-
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FIG. 2. (a) Universal function of angle, £(9). (b) Ra-
tio of 7(g) for the LTS potential to f(g) for our poten-
tial. (c) Elastic-scattering cross section for 0 + 2Dy
at 48 MeV calculated from Eq. (9) incorporating f(6)
for our potential and 7(6) for the LTS potential, Data
are from Lee and Saladin (Ref, 8).

range potential arises dominantly from a single
state, sub-Coulomb elastic scattering analyzed
in terms of our analytical expression might pro-
vide an alternative method of determining the ex-
perimental B(E2) to that single state.
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