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accurate focusing, a necessary feature for strongly re-
fracting media, and that it is relatively unaffected by
harmonic emission from the plasma.
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The He-LiF selective-adsorption data of Frankl and co-workers are analyzed using
an attractive-well, corrugated-wall model. The model is solved to convergence by an
expansion method. The calculated He-LiF spectrum is in good agreement with experi-
ment,; Calculations show that the intensity of weakly bound states is enhanced by band
splitting with stronger resonances. This may provide a method for observing these

states.

Recently there has been a great deal of experi-
mental and theoretical interest in the scattering
of He beams from solid surfaces, For systems
such as LiF at low surface temperatures, the
scattering features are predominantly elastic
(diffractive). At sufficiently low beam energies
or large incident angles the elastic intensity is
dominated by contributions from combined state
resonances in the attractive surface-averaged
potential Vg (z). These resonances are common-
ly known as selective adsorptions., As is well
known they lead to a rather detailed knowledge of
the bound states of V,(2).

In this article, we discuss the selective adsorp-
tion data of Frankl and co-workers! by introduc-
ing an attractive-well, corrugated-wall model of
atom-surface scattering, The solution to the
model utilizes a Rayleigh expansion,? The re-
sulting matrix equation is solved as a series ex-
pansion, The theory is applied to the He-LiF sys-
tem, and is shown to be in good agreement with
experiment, The method provides an inexpensive
means to parametrize surface potentials and ex-
plain complex regions in the experimental data.

As has become apparent from a wide range of
investigations,® the atom-surface potential may
be characterized by a short-ranged strongly re-
pulsive region and a long-ranged weakly attrac-
tive region, With these features in mind we use
a model potential defined as

o, z>eo0lX),
VX, 2) =" ' (1
’ V.(2), z>eoX).

_ 2z is normal to the surface and X =(x,y). Vj (2)is

general and is used to fit the experimental data.
Square-well attractive potentials with the corru-
gated wall have been investigated by other authors.)
o(X) is a periodic function with the periodicity of
the surface. € is the coupling parameter repre-
senting the strength of periodicity of the surface.
For the purposes of this Letter o(X) will be taken
as cos(2mx/a) +cos(2my/a), although higher Four-
ier terms may be included with little difficulty.
The parameter « is the lattice spacing on the sur-
face.

By use of the Rayleigh hypothesis the total wave
function is expanded in the series

wko.;;(X,Z)
=(Pko(—)em'x_EGBG (ka(Jr)ei(Kw)-x. (2)

K is the parallel translational wave vector (k,,k,),
and G is a reciprocal lattice vector (2m/a,27m/a).
kg, the perpendicular wave vector for channel G,
is given by the usual conservation of energy rela-
tion. The functions ¢, G(* )(z) are the solutions to
the one-dimensional Schrddinger equation for
V(2), having exp(+ik z) asymptotic behavior for
open channels and exp(¥|k.|z) behavior for closed
channels, The transition probability to a given
open diffractive channel G is proportional to [BG
The wave function in Eq. (2) must vanish at the
infinite barrier [when z = €o(X) in Eq, (1)]. This
boundary condition gives the following matrix
equation for the scattering amplitudes, B:

TeApe OB () =Ag,Ce), (3)

2
°
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where
Ap g¥(e) =(G"] ¢, W(ea(x))[G).

We wish to develop a series solution for B;, An
expansion of Ag ¢® in powers of the roughness
parameter, €, results in the series

o an(p &)
n=0 * z

(6’| o(X)"|G).
’ (4)

If we treat € as a small expansion parameter (the
validity of this will be demonstrated by the nu-
merical convergence of the method), then the
zeroth-order approximation to Eq. (3) will corre-
spond to the scattering from a potential which is
infinite at z, and attractive for z >z,. Bound
states, E,? for this zeroth-order potential exist
when ¢, “)(zg) =0 for k;*<0, The total energy

of this solution may be greater than zero because
of the translational energy in the plane of the sur-
face. A direct expansion of the scattering ampli-
tudes in powers of € will result in division by
(pko(*')(zo), and will therefore diverge when any &
is near a bound state. This result is analogous

to the difficulties incurred in the Born series
when a bound state overlaps the continuum, We
remove these bound-state divergence problems
by using projection-operator techniques. This
method has a distorted-wave perturbative analog
developed to treat resonances in nuclear physics>®
While this method is not a perturbation expansion
in a weak potential, its convergence is closely
related to the convergence of the analogous dis-
torted-wave theory for such interactions.,” Usual-
ly, high-order calculations with such theories
are computationally impractical, Because of the
choice of potential in Eq. (1) higher-order calcu-
lations are possible here, This appears to be the
fastest way to solve for the scattering amplitudes
for our choice of potential and incident perpendic-
ular wave vector, k, Defining an operator, @,
which projects onto those channels which have a
k¢ approximately equal to that of a bound state

of the zeroth-order potential (resonant channels),
and its orthogonal complement P, we may parti-
tion the matrix equation, Eq. (3), and solve for
the vector Bp=PB. B, contains all the open-chan-
nel and nonresonant closed-channel scattering
amplitudes, We obtain

Bp=App ' ApT) = (App 7 Apg) *(Agq=AgrApp AL (A5 = AgpAp ApD)), (5)

The matrices in Eq. (5) are defined analogously
to By [e.g., Agr=QA"P, where A, is the pro-
jection of the right-hand side of Eq. (3)]. App™!
may be expanded in €, The first term in Eq. (5)
is the direct scattering. Strong resonance fea-
tures in the scattered intensity (selective adsorp-
tions) appear when contributions from the second
term in Eq. (5) becomes large. This occurs when
the determinant of

W=(Agq=AqeArr ALy (6)

is nearly zero, W is a function of the incident en-
ergy, E, The approximate positions of the selec-
tive adsorptions are given by the zeros in the un-
coupled limit of det| W|. These satisfy the Len-
nard-Jones—Devonshire equation

E=E® + (#2/2m)(K + G)? (7

for a given combination of bound state and recip-
rocal lattice vector, denoted by b(n, m). For €
>0, the complex E for which det| W| vanishes is
shifted from the energy given by Eq. (7). The
real part of this shift, when added to E,* of Eq.
(7, gives the position of the resonance., The
imaginary part gives its width,

In Fig. 1 we compare calculations using Eq. (5)
with the experiments of Meyers and Frankl,®

188

V(z) is a 12-3 type potential and ¢ is taken to be
0.15 A, the value chosen to fit high-energy scat-
tering data.® The uncoupled bound states were
initially fitted to those of Meyers and Frankl,?!
followed by adjustments in potential parameters
until the calculated first-order minima agreed
with experiment, Calculations were carried to
numerical convergence of about three significant
figures (< 10th order). The bound states arrived
at in this way were -6.1, -2,5, -0.8, -0,2, and
-0,03.

With the exception of E,? and E * all the bound-
state energies were in excellent agreement with
the newest bound states derived from experiment
by Derry et al.' using Eq. (7). These authors re-
port E ?=-5,90 and observe no fifth bound state.
The discrepancy in E ? the deepest bound state,
is caused by a shift due to coupling to the continu-
um, In Fig, 1 the vertical lines represent solu-
tions to Eq. (7). The resonance minimum for the
0(0, 1) bound state occurs near ¢ =25°, If E,* was
computed from the position of this minimum using
Eq. (7), it would be found to be that of Derry et
al.’ In this case the 0(0, 1) was separate from
overlapping resonances,

In Fig. 1 near ¢ =35° three peaks are observed
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FIG. 1. Comparison of attractive-well, corrugated-
wall theory (solid line) versus experiment (dashed line)
for A =1.03 A&, 6="170°.

experimentally. Although the middle peak might
be labeled as the 3(-1, 1) resonance, our calcu-
lations show that the majority of the middle peak’s
amplitude comes from one of the band-split®
states of the degenerate 0(1, —1) and 0(1, -2), Al-
though the 0(1, —2) is not normally observed, it
splits the 0(1, -1) in first order, and “borrows”
intensity from the more strongly resonant state.

The borrowing of intensity from strongly reso-
nant peaks to enhance weak processes may pro-
vide a means for measuring energies of weakly
bound states, In Fig. 2 the solid vertical line in-
dicates where the 4(-1, 1) and the 0(0, 1) states
are degenerate, Two peaks separated by 1° are
observed because of the presence of the fifth
bound state in our potential, Although the exis-
tence of a fifth bound state for He-LiF is specula-
tive, experiments of this kind may be able to de-
tect its presence. Careful calculations show that
the 4(0, 1) resonance has a width less than 0.1 deg.
While a 0.1-deg resonance is not resolvable on
existing apparatus,’® the structure in Fig, 2 might
be resolved. The existence and energy of a fifth
bound state has important consequences in deter-
mining the van der Waals coefficient, C,, from
experiment,!!

The attractive-well, corrugated-wall is a good
model for elastic atom-surface scattering of He-
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FIG. 2. The splitting of the 0(0, 1) by a fifth bound
state. Vertical solid and dashed lines indicate the ex-
pected resonance position predicted by Eq. (7).

LiF. The substantial agreement with experiment
in Fig. 1 over a wide range of angles is impres-
sive, Estimates from Eq, (7) indicate that this
agreement will not be significantly altered by en-
ergy or angle averaging, Similar agreement is
obtained for other incident scattering angles. The
adjustable parameters C,, z,, and the potential
depth were used to fit the bound states. The
agreement with experiment has been obtained
without the explicit inclusion of a (1, 1) Fourier
component in the corrugation equation for o(X),
Eq. (1). Recent perturbation calculations® have
shown that minima in scattering intensity for a
particular b(z, m) correlate with strong contribu-
tion from the (r, m) Fourier component in the
potential. The experimental data in Fig. 1 ex-
hibit maxima for the (1, 1) resonances, The pair-
wise potential summation approximation of Chow
and Thompson® for He-LiF yields a large V,(z)
component, Our results would indicate that such
a potential cannot fit the data in the 30-45° range.
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A reinterpretation of the ir spectra of Dean and Henry in oxygen-doped GaP strongly
suggests that they involve radiative capture and excitation of the second electron bound to
oxygen. Further, this electron is localized near the nearest-neighbor Ga ions, it is
bound by ~0.9 eV as found also by Samuelson and Monemar, and its electron-phonon cou-
pling is small—A ~ 0.6, Zw~47,5 meV-—in disagreement with Henry ef al. The analysis
emphasizes the usefulness of the “phonon signature” in identifying deep levels from their

optical spectra.

Dean and Henry (DH) have published a careful
study of radiative electron capture onto deep oxy-
gen donors in GaP.! Subsequently Henry and co-
workers?*® discovered by photocapacitance tech-
niques that each oxygen donor in GaP could bind
a second electron to become O, with each elec-
tron bound by nearly 1 eV. Since this latter dis-
covery both states have been studied extensively,
and two conflicting models for the two-electron
state have developed—that of Henry and co-work-
ers?”* and that of Grimmeiss et al.® and of Mor-
galn.6 The former authors conclude that a very
strong electron-lattice interaction is acting and,
indeed, that GaP:O is a prime example of such
interactions in semiconductors.? The latter au-
thors conclude that a kind of selection rule must
be operating, so that optical transitions between
the X, conduction-band edge and the two-electron
ground state of O™ are very weak. In this Letter
I reexamine the DH data and propose that they in-
volve the second electron in O™ and allow impor-
tant properties of this anomalous state to be de-
termined.

An indication that the original one-electron in-
terpretation of the DH data is incorrect is given
by a comparison of the shape of the phonon rep-
lica structure in the luminescence spectrum of
DH with that of the donor-acceptor (D-A) pair
spectra of Dean, Henry, and Frosch,” both of
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which are shown in Fig. 1. Monemar and Samu-
elson have recently found® that the same phonon
energies [ﬁwlz 19 meV and 7w, =48 meV (see al-
so Ref. 7) and relatively large coupling strengths
[x,=1.65 and A, =1.1] which fit the pair (emis-
sion) spectra also explain the shape and tempera-
ture dependence of the photoneutralization (ab-
sorption) spectra for the O° ground state. [These
are referred to as the configuration-coordinate
(C-C) modes.] These phonons do not appear in
other D-A pair spectra. Thus, this satellite
structure may be considered the “signature” of
the deep O° ground state with respect to its one-
electron transitions.

The spectra in DH, however, are very differ-
ent—in part because the zero-phonon transition
O, (see Fig. 1) is forbidden and cooperation of a
nonsymmetric (active) phonon is needed to relax
the selection rule and produce a strong replica,
and in part because the states are different. If
the deep electron states involved in both of these
spectra were the same, the C-C phonons and
coupling strengths would be nearly the same (be-
ing only weakly dependent on the shallow state in-
volved), and the same replicas of any strong fea-
tures which appear in one spectrum would appear
in both. Thus there would appear in Fig. 1(a) a
strong broad 19-meV replica of O;,.’ and also of
Or1, and of the optical phonon peaks, none of



