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In earlier studies of plasma diffusion with Okuda-Dawson scaling (D - n ' ), perturba-
tion theory indicated that arbitrary initial data should evolve rapidly toward the separa-
ble solution of the relevant nonlinear diffusion equation. Now a Lyapunov functional has
been found which is strictly decreasing in time and bounded below. The rigorous proof
that arbitrary initial data evolve toward the separable solution is summarized. Rigorous
bounds on the decay time are also presented.

Bn en—D(n) —=F(x)—for 0 &x &1,
Bg 8+, Bt

where x is the spatial variable corresponding to
magnetic field potential and t is the time. The
geometrical factor F(x) is a positive function de-
termined by the octupole geometry and in general
D(n) ~n where 5& -1. It is convenient to re-
write this equation as

u„„=F(x)(u' ')„ (2)

where q=(2+5)/(1+5) and n=u' '. By use of a

Anomalous diffusion of hydrogen plasma across
a purely poloidal octupole magnetic field has
been observed experimentally' for densities n,
-5 ~10' cm ' and poloidal fields B~ in the range
250 G-1 ko. The diffusion coefficient for this
anomalous diffusion scales like D -n ~' with D
being independent of B~. This scaling was pre-
dicted for vortex diffusion by Okuda and Dawson'
when the ratio of ion plasma frequency and ion
cyclotron frequency satisfies O~,. '/Q„'»1, and
was first observed by Tamano, Prater, and Oh-
kawa. ' The Wisconsin octupole experiments have
shogun that after a fete milliseconds the density
profile evolves into a fixed shape (the "normal
mode") uhich then decays in time. Numerical
studies' indicated that the normal mode shape
was well approximated by the shape of the sepa-
rable solution of the relevant one-dimensional
diffusion equation.

In normalized units, the diffusion equation may
be written as4'

perturbation analysis, it was established that the
separable solution of (2) is stable against small
perturbations. If the separable solution is writ-
ten as u(x, t) =S(x)T(t), then for F(x) =const all
perturbations decay at least as fast as T'(t).

In this Letter, toe report the first rigorous re
suits on this novel nonlinear diffusion problem
Methods have now been developed to prove that
an arbitrary initial density profi:le will evolve
toward the separable solution for 2 &q & ~ (0 & 5

&-1). To save space, the methods will be illus-
trated on the model diffusion equation

u„„(x, t)=2u(x, t)u, (x, t),

with u(0, t ) = u(1, t ) = 0, since this corresponds to
one case of experimental interest. All the argu-
ments presented here may be generalized for all
2 &q & ~. When F(x) = const, the generalization
enjoys full mathematical rigor. ' When F(x) is an
arbitrary positive integrable function, the gener-
alization may at least be carried through forma1. -
ly. '

Sabinina' has established the existence and
uniqueness of the solutions of (3). She has also
shown that a finite time t* exists when the solu-
tion first vanishes identically. We call this time
t* the extinction time.

The proof that arbitrary initial data evolve to-
ward the separable solution will now be summa-
rized. First, introduce the function

n)(x, t) =u(x, t)/(t+ —t),
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and the functional

1(~)= ', -f~„'dx -,'-f~'dx . (5)

We wish to prove that w tends toward the nontri-
vial positive function zap that satisfies

u'(x, t}-x(l-x)R(t) (15)

Since (6) is satisfied by w = 0 as well as by the
separable solution so„we must exclude the pos-
sibility that zo -0. Using elementary calculus
and Schwarz's inequality, we find that

gg„„+2''=0, (6) from which it follows easily that
since this is one form of the equation for the
shape function S(x) of the separable solution. Sub-
stituting (4) into (3) and defining a new time coor-
dinate by v= —ln(1- t/t*), we find that sv satisfies

K + 226 = 2ZUQ) ~. (7)

Taking the r derivative of (5), integrating once by
parts, and using (7), we find

I=-2J gg ch +0./'

d7
(8)

f uxordx= — u udh=—
XX Q

Using Schwarz's inequality, we obtain

u
( fu„'dx)'- *" dx fu'dx

u

Now define Q(t) = f u'(x, t) dx and R(t) = f u„'(x,
t)dx. Then it is not difficult to show using (3)
that

(10)

d, d—Q = —-'R and —R=-
dt

u
u

Substituting (ll) into (10), rearranging terms, in-
tegrating once, exponentiating, and again rear-
ranging, we find

dt
—Q '(t) - —2R(0)Q '"(o). (12)

Integrating (12) from 0 to t* and using the defini-
tion of t*, we obtain

Since m is positive for all 7& ~ and so, =0 only
when m satisfies (6), df/d7 &0 for all v & ~ unless
w already solves (6). Clearly I is bounded above.
If I is bounded below, se must tend toward a limit-
ing function as we will show.

To prove that I is bounded below, consider the
integral

(16)

where B(x, y) is the beta function. Using (ll) and
the same type of manipulations used to deduce
(14), we find

0' - t «2 2,
' 'Q~'(t) «0.351maxu(x, t), (17)

3'

t„=«q '(0) ~ t* (18)

where (&=0.351 in this case. A more refined ar-
gument, ' based on the fact that d'Q~'(t)/dt' ~ 0
while dQ~'(t)/dt « —2Ac'' where A. =11.7S67 and
c= f S' d=x.04(see Ref. 5 for notation), gives «
=0.2301. This bound is the best possible one of
this type since equality is achieved when ~ =up.

One rigorous lower bound is given by (13).
Another is obtained by considering the function
S(x) = nr, (x)/m, ( 2) where w,-( —,') = —,'A.. Then define

from which it follows that 2.85 «max'(x, 7') for
all 7. Thus, the possibility that u -0 as t- t~

has been excluded.
The remainder of the argument involves a num-

ber of technical details' which need not concern
us here. The argument may be summarized as
follows: If w satisfies (6), we are done. If w

ceo„ then X(w) is a strictly decreasing function
of 7 which is bounded below by I(m, ). Then for
some sequence of times (r„-~), lim J wc@,'dx-0
and, hence, limu -sop. Some additional work is
required to establish the uniformity with which
I approaches Mp Thus, the desired result that
arbitrary initial data evolve tonrard the separable
solution has been establ'ished.

Another interesting aspect of this problem is
the determination of t*.' One rigorous upper
bound on t~ in terms of the initial data may be ob-
tained from (17). We find

t*- t~ 2Q(t)R '(t). (13) ca,(t ) = Ju(x, t)S'(x) dx (1S)

Using similar manipulations again on (13), we
finally obtain Q(t) «Q(0)(l —t/t*)' or equivalently

fv'( rx) dx « fw'( 0x) dx. (14)

Thus, fm'dx is bounded above and J(w) is corre-
spondingly bounded below.

cB(t) = fu'(x, t)S(x) dx.

From (3) and Schwarz's inequality, we find

dB(t)/dt= Aa, (t) - -A. ' B'(tt) .—

(20)

(21)
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Case

lv

0.1834
0.1673
0.1894
0.1761
0.2102

0.1837
0.1675
0.1894~
0.1762
0.2104

0.1847
0.1677
0.1895
0.1762
0.2107

0.1927
0.1750
0.1925
0.1793
0.2301

TABLE I. Values of the rigorous lower bound tL,
perturbation estimate t&, extinction time t *, and rig-
orous upper bound t„ for five numerical experiments
on Eq. (3). The initial distributions for the first four
cases were

3

u {x,0) =Q a& sin{i + 1)~x
l =0

with (a&,a2, a3, a4) equal to (i) (1,0.4, 0, 0), (ii) (1,0,
0.3, 0), (iii) (1,0, —0.3, 0), and (iv) (1,0, 0, 0.225). The
fifth case was for constant initial data u (x, 0) = 1.

collisional plasma. " The plasma diffusion was
observed to be classical (b =1) for all values of
B~ studied (B~6 1.25 kG). Hosuever, "normal
mode" behavior persisted as predicted by the
perturbation analysis of Refs. 4 and 5. This ob
servation provides a second experimental con-
firmation of the correctness of our analysis. Fur-
thermore, it suggests that such behavior may be
a very general property of enclosed, nonlinear,
diffusive systems.
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~Ref. 11.

(This idea was suggested to us by V radahna".)
Integrating (21) we find the rigorous lower bound

t --B '(o) t*.L (22)

In Ref. 5, an estimate of t* was obtained using
a perturbation analysis. That estimate was

B(0) + a, '(0)
a(0)

(23)

Using the fact that 2 ~y+y ' for y = 'B'// „awe
find immediately that t~ t~. Thus, the perturba-
tion estimate is always greater than or equal to
the rigorous lower bound (22). By expanding u in
terms of the eigenfunctions of Ref. 5, we can also
show that Q~'(t) —= 'c' /(Bt)/ (at). It follows that
t„2B(0)/Xa,(0) ~ t~.

In Table I, we compare our rigorous bounds and

the perturbation estimate t~ to the value of t~ ob-
served in numerical experiments. The first four
cases are the same as those in Ref. 5. The fifth
case is for constant initial data u(x, 0) =1. As
anticipated, these computer experiments (and
many others) show that t~ & t~ &t* &t„; however,
the relation t~ ~ 0' is not universal.

It has recently been observed experimentally
that, in the presence of a weak toroidal field
(Br/B~e 0.1), the enhanced vortices required for
Okuda-Dawson diffusion are damped away in a
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