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Starting from an operator eikonal formula, we develop a new formalism which enables
us to prove that, in quantum electrodynamics, a particle becomes completely absorptive
at high energies.

We recently developed a new scheme for unitar-
izing S-matrix amplitudes in gauge field theories
in the high-energy limit with fixed momentum
transfer. We have (i) established a consistent
procedure for determining which Feynman dia-
grams and which contributions from these dia-
grams to include in calculating the scattering
amplitudes, and (ii) found that the sum of the re-
sulting amplitudes is given by an eikonal form
which is explicitly unitary and which is valid for
all processes, both elastic and inela. stic. In out-
line, we used the unitarity condition and crossing
symmetry to determine which set of Feynman
diagrams to calculate. This is possible because
the unitarity condition interrelates the amplitudes
of different Feynman diagrams. In particular, if
we include a set of lower-order Feynman dia-
grams, we must then also include all hi.gher-or-
der diagrams which are related to the lower-or-
der ones by unitarity. Starting with the lowest-
order a.mplitudes for all elastic and inelastic re-
actions (with the propagators in the Yang-Mills
theory Reggeized), a unique set of Feynman dia-
grams is thereby generated. The amplitudes of
these diagrams are then computed using Feynman
rules. ' In quantum electrodynamics (QED)' we
calculated the appropriate diagrams for all proc-
esses and to all orders of perturbation theory.
In Yang-Mills theory' we calculated the elastic
scattering amplitude through the tenth order in
perturbation theory. In each case, the two-body
elastic-scattering amplitude in the impact-dis-
tance space is given by the eikonal form

S(b, &) = (0!exp[i'(b, &)]!0).

In (1), b is the two-dimensional vector repre-

!
senting the impact distance between the two in-

cident particles, & =Ins/2m» 1, where s is the
square of the center-of-mass energy of the sys-
tem, 10) is the state containing the two colliding
particles (i.e. , no created particles), and the
eikonal x(b, &) is a, Hermitian operator repre-
senting the sum of the lowest-order amplitudes
in all reactions, with the propagators in the Yang-
Mills case Reggeized. Similar eikonal forms
have been proposed before as models for high-
energy scattering. ' In contrast we have obtained
it not by assumption but by a systematic program
of calculation in field theory.

Unlike the eikonal formula in potential scatter-
ing, to which it bears a formal resemblance,
Eq. (1) is not yet in a form from which physical
consequences can be readily extracted. Because
it must describe creation and annihilation of par-
ticles occurring in hadron scattering, the eikonal
X is an operator. As a result, the matrix ele-
ments of e'x are not related to those of X in a
simple manner, and the physical implications of
the eikonal formula (1) remain to be deduced.

The expressions for the eikonal x in QED and
the Yang-Mills theory are fairly complicated.
In the QED case, the complication is mostly due
to the fact that a created electron must be ac-
companied by a created positron, while in the
Yang-Mills ease the complication is due to the
complexity of the vertex factors and the Reggeiza-
tion of the propagators. As a first attempt to
understand the consequences of eikonalization,
we shall consider the simplified model in which
a particle can be created singly with the vertex
factor equal to the coupling constant g, and the
propagator in the momentum space is simply
(qi'+X') ', where q~ and & are, respectively,
the transverse momentum and the mass of the
virtual particle. For this model, we have

X(b, T) = g[&( )bg+fd'b, f, dT K(lb-b, I)&(b„T,)K(b,)+...
n

+g"fgd'b, f;dr, f;dr, "f'" 'dT„SC(1b 5,1)-x(5„r,)Z(1b, b,1)~(5„r,)" Z(b„)," ]. (2)

In (2), b equals 1b1, K(b) =K,(A. b)/2m is the Fourier transform of (q&'+&') ' (the meson propagator in
the impa, ct-distance space), and

x(b;, T;) = [a (6), &;) + a(b;, &;)]/~2,
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with a (b;, T;) and a(b;, T;) the operators for creating and annihilating a particle at b; with rapidity (in
the laboratory system) 2mT;. The creation and annihilation operators satisfy the commutation rule

fa(b;, T;),a~(b;, T,)] = &(T; —T,)&~'1{b;—b,).
Thus the first term in (2) represents the elastic contribution, the second term the contribution from
the creation or annihilation of a single particle, and so on.

As an artifice to facilitate the calculation of S(b, T) we shall divide the b and T spaces into small re-
gions and approximate the integrals in (2) by sums. (Eventually, we recover these integrals by going
to the limit when these small regions are infinitesimal. ) Thus we replace the b space by a two-dimen-
sional lattice with the lattice constant (distance between two neighboring la, ttice points) d, and replace
the T space by a one-dimensional lattice with the lattice constant &. We shall use the index j(two com-
ponents implied) to denote a lattice point in the b space, and the index n to denote a lattice point in the
T space. We shall also replace the creation and annihilation operators by a, (n) and a, (n), which satis-
fy the commutation rule fa;(n), a; (m)j = 5;, 5„.

With such repla, cements, and some algebraic manipulation, the eikonal in (2), denoted here by y, (N),
can be shown to be equal to the jth component of a vector y(N'), where

y(N) = fr +2~~&x{N)]f&+2~&~{N—1)] [I+2~«x(1)]y(0). (3)

In (3), N& = T, I is the identity matrix, and y(N) is a, vector which has a component associated with
each lattice point in the 5 space, with fy(0)j; =g'E(ib; i). Also, A and x(n) in (3) are matrices with the
matrix elements &;;=dgK( ib; —b i)/2, [x(n)];; =x;(n)&;; associated with each pair. of lattice points i and

j, where x;(n) =[a;(n)+a;t(n)]/ 2.
Since the operators x, {n) commute with one another, an eigenstate of y;{n) is a product of the eigen-

states of the operators x;(n) involved in (3). In other words, each eigenstate of Z;(N) is specified by a
designation of the quantum numbers of x, (n) for all j and for all positive n less than or equal to N.

It is therefore possible to calculate S(b, T) in (1), denoted by S;(N) below, by expanding the ground
state l0) into a superposition of the eigenstates of y;(N). Since the ground-state wave function of a har-
monic oscillator is exp(- &x')/EU', we have from (1) and (3) that

S,(N) = J II II (dx,.(n) exp[-x, '(n)] j~ir
]~n &N

x expi([I+ 2~eAx(N)) [I+2~ehx(N —1)]' ' [I+2~eAx(1)]y(0)], . (4)

We may think of x(n) in (4) as a diagonal matrix
whose matrix elements x;(n) are random variables
with Gaussian distributions. Thus S,(N) is equal
to the expectation value of the exponential of the
jth component of a random vector iy(N) which,
by (3), is equal to a product of random matrices
operating on iy(0). We shall study S,(N) in the
limit d-0, &-0, with T'=&X»1.

The physical meaning of the eikonal form (4) is
very suggestive. Let us imagine a three-dimen-
sional lattice with its lattice points specified by
the index (j,n) ~ We may think of j as the index
specifying the transverse position on the lattice
and n the index specifying the longitudinal posi-
tion on the lattice. While the transverse dimen-
sion of the lattice is infinite, the longitudinal
dimension of the lattice is equal to X& =T. As s
= e~ increases, the longitudinal dimension of
the lattice also increases.

There is, associated with each lattice point
(j,n), a harmonic oscillator with the creation

operator a;~(n) and the annihilation operator a, (n)
When two high-energy particles collide, they can
excite any of these harmonic oscillators associ-
ated with the three-dimensional lattice in any ar-
bitrary manner. The scattering is therefore a
stochastic process in which quanta of the harmon-
ic oscillators are created and annihilated in a
random way. It is interesting to observe that the
relevant physical entity which directly enters is
not the creation operator or the annihilation oper-
ator separately, but the combination x = (a+ a )/
~2. The eigenvalues of x play the role of a ran-
dom variable which can take any value between
—~ and ~, with the probability distribution equal
to the Gaussian exp(-x') j~m. It is also impor-
tant to observe that the random variables x;(n)
enter in the form of a power series for the eikon-
al y, not for the 8 matrix. As s becomes larger
and larger, the three-dimensional lattice expands
in the longitudinal direction, and more and more
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harmonic oscillators are involved. Thus X re-
ceives contributions from an increasing number
of random variables as s increases. Consequent-
ly, the expectation value of (OIX (N)10), for ex-
ample, is very large as s-~. Indeed, in the QED
case, this expectation value corresponds to the
sum of tower diagrams' and violates the Frois-
sart bound. It is important that the S matrix
S;(N), being equal to (01exp[iX,(N)]10), always
satisfies unitarity no matter how large x (N) be-

comes. Indeed, let p, ~(x) be the probability that
the eigenvalue of x~(N) is equal to x; then we have

S;(N) = J„dXp;, (X)e'".

If p, &(X) is concentrated in the region where X is
very large, we expect that the rapid oscillation
of the integrand makes the integral above vanish.

We shall show below that this is indeed the case.
Let us define P to be a vector which has a compo-
nent associated with each lattice point of the b

space, and

S($,Ne) -=Jg g(dx;(n) exp[-x (n)]/~E' exp[iX(N) &].

(7)

then

S($, 7') f.e" S=((, Ee),

If we set $; =1 for a certain j, and set all other
components of $ to zero, then S(f,N&) is equal to
Sz(N) given by (4). Thus, a knowledge of S($, T)
contains more than the complete information for
the S matrix over the whole b lattice.

Equation (3) gives the recursion formula X(N
+ 1) = [I+2~&Ax(N + 1)]X(N). By making use of
this and taking the desired limit &-0, it is
straightforward to show that

8S(f, T')/8'T =aS((, T), (6)

where

H =&~,(&~~;-;&;)'(8'/8&, ')
with the initial condition S($, 0) = exp[i( 'X(0)1.

A standard way to analyze the partial differen-
tial equation above is to perform a Laplace trans-
form with respect to 7'. Let us define

S(r, )=- J, dTe 'S(r, 7'), (8)

S((,~) = —(H ~) 'exp[i& X(0)]

We shall prove that, in the desired limit d-0,
S(P,~) is an entire function of ~. Thus we can
set 6 =0 in (9) and becomes purely imaginary
on the entire contour of integration. Consequent-
ly, as T-~, the integrand in (9) oscillates rapid-
ly, and S($, &) vanishes as &-~ with/ fixed.

To prove that S(f,) is entire in the limit d-0,
let us note that A is proportional to d. Thus, in
the operator H as given by (7), we may set the
diagonal matrix element AJJ to zero. This is be-
cause we can always drop one infinitesimally
small term from a sum which is an approxima-
tion of an integral.

The key observation is that once we set A» to
zero, the operator H is self-adjoint and negative
definite (or nonpositive). The latter property
follows from

Jd'4*(AHV(&) = Jd'&~&—;(&A*~; ;)'- (1o)

The operator H is also invariant under scale transformations g,-c$,, all j. Hence it is helpful to in-
troduce the spherical coordinates r = (E$,')'~—', $, —=$, /r. The operator H operating on r " times a
function of (, is always equal to r " times another function of $,. We may therefore define the opera-
tor X(q) by Hr "E(f,) = r "K(r1)E(f;), where K(q) involves only the angular variables $; If we e. xpress
exp[i) X(0)] by its Mellin transform integral

". [ & x(0)l" """I'(q)
ioo 2' S

where L is any positive constant, then

S(),w) =—,r "e"""I'(r1)[R()l)-so] '[('X(0)]l - i~ 2VTZ

Let us for the moment consider the case in which the lattice b space has M lattice points. Then it
can be proved that, since H is self-adjoint, we have R(g) =R (M -q ). In particular, the above equa-
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tion states that X(q) is Hermitian on the line Re7l =IN/2. We therefore move the contour of integration
in (11) to this line, and get

S($,m) =-

From (12), it is seen that S(f,~) has singularities
at the points of ~ equal to the eigenvalues of X(&M
+ip). Since all of these eigenvalues are negative,
S(j,~) has singularities on the negative real axis
of ~.

As M- ~, all of these eigenvalues become nega-
tively infinite. This is because they are also the
eigenvalues of H corresponding to the eigenfunc-
tions in the form of x " ' times a function of

The radial derivatives of these eigenfunctions
are equal to infinity as M-~. Thus, from (10),
the corresponding eigenvalues go to —~ as M

Consequently, Sg, Mi) ha, s no singularities
in the finite ~ plane. In other words, 8(f,~) is
entire.

The considerations above can be directly ex-
tended to the eikonal formula in QED. In this
case, we have, ' instead of (7),

82
+k i~p$jAl

i jul l

where K;;» is proportional to d4. In the limit d
-0, H is again Hermitian, with all its eigenval-
ues negatively infinite. Thus S(f,) is again an
entire function of , and S(f, T) vanishes in the
limit &-~ with ffixed. Physically, this means
that a target particle becomes completely absorp-
tive at high energies.

We have just begun to explore the consequences
of the eikonal formula, and many important prob-
lems remain to be solved. We list some of them
here: (i) Although we have shown that S(f„T)
vanishes as &-~, the rate at which it vanishes
is still unknown. This will be of experimental in-
terest. (ii) We have studied only the elastic-scat-
tering amplitude. The eikonal formula is appli-
cable to all reactions, elastic or inelastic. Ex-

~ tension of the treatment to inelastic amplitudes
will enable us to determine the behavior of in-
elastic cross sections, the multiplicity, the in-
clusive distributions, etc. (iii) The formalism
we use has been applied only to QED. The con-
sequences of the eikonal formula for the Yang-
Mills case are yet to be deduced. In particular,
since the vector-meson propagators in the Yang-
Mills case are Beggeized, all matrix elements
of the eikonal operator vanish at infinite energy.
It is therefore not at all clear that the S matrix
would approach zero as the energy approaches
infinity. More generally, it will be important to
determine if the physical consequences of Yang-
Mills theories are qualitatively different from
those in QED.
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For a precise description of the approximations in-
voleved in this procedure, see H. Cheng, J. Dickinson,
C. Y. Lo, K. Olaussen, and P. S. Young, to be pub-
lished, and H. Cheng, J. Dickinson, C. Y. Lo, and
K. Olaussen, to be published.
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