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The stability of He-A. with uniform superflow is examined in the hydrodynamic limit.
Below the threshold found by Bhattacharyya, Ho, and Mermin, any reasonable choice of
hydrodynamic parameters renders the uniform texture stable with respect to general
three-dimensional perturbations. Beyond threshold, the texture undergoes a transition
to a static helix, whose broken translational symmetry complicates the general stability
analysis. In a truncated variational approximation, this structure is stable near thresh-
old with respect to perturbations proportional to exp(ik r),

Recent studies of superfluid 'He-A have revealed that uniform hydrodynamic flow can render the uni-
form texture unstable. ' ' This possibility arises from the competition between the hydrodynamic
torque that tends to bend l and the curvature energy that opposes such deformation. In particular,
Bhattacharyya, Ho, and Mermin' have an3lyzed the hydrodynamic free energy to obtain a simple crite-
rion for the stability of the uniform textur'e with respect to small deviations in the direction of l. For
bulk fluid, the dipole energy couples d and ~, in effect stiffening the system. With the weak-coupling
Ginzburg-Landau parameters near T„ this enhancement just suffices to stabilize the uniform texture.
At lower temperature, however, the dipole-locked uniform configuration may become unstable because
of the decreased anisotropy po in the superfluid-density tensor. The present paper examines the char-
acter of the instability and the resulting deformed state in the hydrodynamic approximation, Just be-
yond threshold at p~, the uniform ~ vector undergoes a second-order displacive" transition to a stable
helical configuration. The vector j then has a maximum apex angle proportional to ( p~ -p, )'~2 and a
wave number proportional to the superfluid velocity. This behavior typifies a Landau-type transition.

My analysis starts from the hydrodynamic free-energy density"

f= sp, v,2 —s po(f v,)2+ cv, ' cur1l —co(v, 'l)(l' curl/} + sK, (divl)2+ 2K, (l ' curll)'+ 2K~(l curll)' (1)

and the corresponding mass-current density

j, =Bf/Bv, =p,v, -pol(l v, )+ccurll —cot(l ~ curll ).

I follow Bhattacharyya, Ho, and Mermin and take v„=0, which may be considered to arise from the
presence of distant stationary walls. In the hydrodynamic limit, the orbital part of the order param-
eter of He-A is specified by the orientation of a rigid triad of orthonormal vectors, and the corre-
sponding dynamics is obtained from three independent variations: &4 characterizing a rotation about
the unit vector 1, and &l characterizing the change in the direction of ~. These independent virtual dis-
placements induce an associated change in the superfluid velocity,

&v, -V&O l"x(Vl) 5l

A straightforward analysis provides the coupled dynamical equations

V»j, =O

Bf Bf
tL—=V —~+l x(j ~ V)l

Bt 'BV/ Bl

(4)

where p, is the orbital viscosity and the partial derivatives of f are taken at fixed v, .
Before treating the helical configuration, it is helpful to review the stability of the uniform state l

=Z and v =tvE. Small deformations of this texture may be characterized by the phase variable 64 (r, t)
and a two-dimensional vector M(r, t) confined to the xy plane. The translational invariance of the un-
perturbed configuration permits a complete solution of the linearized version of Eqs. (4) and (5) in the
form of three-dimensional plane waves proportional to exp(ik'r -ot). It is convenient to use Eq. (4) to
eliminate the amplitude &@q, leading to a pair of equations for the two components of ~~g; these equa-
tions also follow directly from the free-energy density in Eq. (4) of Ref. 1. The time-decay parameter
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& satisfies a quadratic equation:

[og-pp'-Kbk. '-K,q'+p, bU'q'(p, k,'+p, q') '][o'P. —pp'-Kbk. '-K,q'+c, 'k q'(p, k,'+ p, q') ']

-k,'su'[2c, +p, '-p, c,q'(p, 'k, '+ p, q') ']'=0, (6)

where q is the projection of k onto the xy plane.
Both roots of (6) are real, and stability requires that they be positive for all k. It is straightforward

to show that the sum of the roots is positive if

4K, i 2(K, ~K, ) & (c,'/p, ") ~ (p, "/c,')(2K, -K, -K,)',
which is satisfied for B.ny reasonable hydrodynamic parameters. The product of the roots P(k) also
must be positive, and it is simplest to parametrize k by its magnitude k and its polar angle X meas-
ured from the z axis. In this way, P(k, y) becomes a quadratic form in k, with coefficients that de-
pend on g. Near the threshold at

p~= (co+ 2ps ) Kb (7)

P(k, y) has a local minimum at Ik I =(c,+2p, )~/Kb and y =0 whenever K, +K, & ~p, , which is satisfied
for all plausible choices of the hydrodynamic pa, rameters. Numerical evaluation for all X confirms the
conclusion of Ref. 1 that the uniform texture first becomes unstable at p„with Z = 0 (namely q = 0) and
Ik, l=(c, + 2 p, ")~/

This instability signals the onset of a helical distortion, and it is now simpler to project I on a spher-
ical polar basis, with I, = sin8 cosy, l, = sin8 siny, &, = cos8. The basic dynamical equations (5) take the
form

B8 Bf Bf
]U,
—=&' ———sinOj, &y,et

=
eve ag (8a)

By B B
p sin'8 =V — + sin8j,Bt 8Vy By (8b)

where the partial derivatives off are again taken at constant v,. A static helix is characterized by an
apex angle 80 and a wave number p, with the azimuthal angle given by y, (z) =ps. The corresponding
superfluid velocity retains the general form v, =~Z, but the supercurrent now has a helical structure
with

j,„~i„=—sin8, e' 'fp,~ cos8, + (c —c,sin'8, )p]

and a uniform component along z,

j,, = (p, p, cos'8—,)w + cop sin'8, cos8 o

(Qa)

(gb)

This current satisfies Eq. (4). In addition, Eq. (8b) holds identically for a static helix, independent of
p, and the remaining equation (8a), gives a condition for the equilibrium apex angle:

sin8, [j„p+p,' cos8, + c,wp(2 —3 sin8, ) + 2K p' cos8, sin'8, +K,p' cos8,(1 —2 sin'8, )]=0. (10a)

Any 8, and p satisfying this equation represent a possible equilibrium configuration, but they will not,
in general, minimize the hydrodynamic free energy, given in Eq. (11) of Ref. 1. Imposing this addi-
tional condition readily yields a second relation,

c,cos8, y 2(p, "+p, sin'8, ) sec'(~8,)
-K, cos'8, +K, sin'8, + c,cos8,(1 - cos8,)- ' (10b)

which is the optimum value for a given set of hydrodynamic parameters.
The solution 8, of (10a) is just the uniform configuration considered previously. If, however, p, is

less than the critical value p~ and p is near the critical wave number

Pc = —(Co+ p p~ )w/Kb,
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the following second solution exists:
II 2

g 2~ K»(co+ 2Ps ) Ppc Po p pc
(2K, --'P. )(c,+-'P. ) --'P. K»- P p. (12a)

The coefficient is positive for typical hydrodynamic parameters (it has the value —, for the weak-coup-
ling Ginzburg-Landau parameters), and this relation therefore shows that small-angle helices can be
in static equilibrium within the range of wave numbers

c ( ~(X ~0 (13)

Although the actual range of stability is narrower, we shall see that helices with p=p, are indeed sta-
ble near threshold. Similarly, an expansion of Etl. (10b) yields

8 =00+68, P =+0+~+, V, =~~+~V„ (14)

where [see Eq. (3)]

6v, = V54 +p sine IE.

Etluations (4) and (8) may be expanded to first or-
der in the small quantities &4', &0, ~p, and the
translational invariance in the xy plane suggests

~~
a plane-wave structure exp(itl'ri —«), where ri
=xx+yy. In contrast, the ~ dependence is com-
plicated by the broken translational symmetry.
For q2& 0, simple axial plane waves exp(ik, z) no

longer satisfy the coupled equations because the

periodic helical structure mixes in harmonics of
the form exp[i(k, +np)2], where n is an integer.
It is not difficult to obtain the set of homogeneous
algebraic equations for the associated amplitudes
&@„, &&„, &qt„, but a full analy»»s prohibitive.

g 2 K»+2 p pp+ cpcC | II

opt c 0 K 2 2C p
ll

showing that p, is the optimum value near thresh-
old; the coefficient in the correction term has the
value 7/60 for the same weak-coupling parame-
ters.

To test for stability, we consider perturbations
of the form

! As an approximation, I have truncated them by
including only the terms with n =0. To justify
this procedure, we note that the instability of the
uniform texture first appears with q' =0, so that
small q' is expected to remain the most impor-
tant range. Furthermore, the exact coupled dif-
ferential equations for &4', &~, &y have a varia-
tional basis, equivalent to minimizing the free
energy for general variations about the static
helix. Since the terms that mix in the additional
harmonic contributions vanish at q' =0, pure plane
waves exp(ik, E) should provide a suitable trial
basis for studying the long-wavelength behavior.
Minimization within this restricted class of trial
functions precisely reproduces the truncated equa-
tions with n =0.

In this approximation, the condition ~' &j, =0 is
readily solved for &4 0, and substitution into the
remaining equations yields a pair of algebraic
homogeneous equations for ~!90 and ~y0. As for
the uniform texture, the decay constant 0 for
small-amplitude perturbations with k = q+A, 2' sat-
isfies a quadratic equation, and both roots are
real. Again assuming P~-pp«p~ and (p -p,)'
«p, 2, we find that the sum S and product P of the
roots are given by

S =2[~'(P -P,) -K,(P -P,)2]+k,2[2K, e,2(2K, -K, K,)]

+ q [K»+K»+ 2 gp'(2K» —K. -K,)]-cp'ep'(k, ' —2q')'(P, ' k,'+p, q') (16)

I'=2k:K [~'(P -P.) -3K (p -p.)2]+q2(K. +K )[~'(P -P ) -K,(p-p. )'J

+ [k, K»+ 2q (K, +Kt)1

{k,K»+ 2q (K, +Kt)+&o (k, —2q )[K,+K, -2K» —(k, —2q )c (p, k,2+P, q2) ']j
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For small &,' [see Eq. (12a)], both of these are
positive definite for

1 polyp~ I

(18)

which ensures the existence of stable helices
near threshold with wave number = p, and small
apex angle. Since Eq. (18) is more restrictive
than Eq. (13), the small-amplitude analysis is
essential in determining the range of stability.
Furthermore, a, helix with wave number p that
satisfies (13) yet violates (18) is unstable with
respect to long-wavelength longitudinal deforma-
tions (k, &0, q=0), but it remains stable for
trans ver se de for mations (q & 0) .

It is notable that the criterion for stability
exhibits no threshold in the magnitude of the
superfluid velocity se. For this reason, my anal-
ysis applies both to the "toroidal" configuration
considered in Ref. 1 and to the uniform flow con-
sidered in Ref. 2. In the former case, w would
decrease with increasing angle G„according to
Eq. (10) of Ref. 1, whereas xo would be fixed in
the latter case.

The present calculation suggests two important
extensions. First, it will be interesting to in-
clude higher-harmonic contributions in the solu-
tions for 54, 58, 5y, such as those proportional
to exp[i(k, ap)z]. The variational principle shows
that this improved set of trial functions will im-
prove the estimate for o; but I do not anticipate
a qualitative change in the stability criterion (18)
near threshold.

A second important question is the region far
from threshold. This problem involves a wider
range of the hydrodynamic parameters, whose
temperature dependence may be found for weak

coupling from the work of Cross. ' Near T„ the
uniform texture is stable in the dipole-locked lim-
it. For T«T„however, the anisotropy term p,
in the superfluid-density tensor decreases alge-
braically. When po falls below p„, my analysis
indicates that the texture acquires a stable helical
structure with wave number p near p, . Does
this configuration remain stable for still lower
temperatures, or does it itself become unstable p

In the latter situation, it would be interesting to
investigate whether the instability occurs for
Ima g 0, which would indicate that the new state
has intrinsic time dependence, and for q g0,
which would suggest a nonzero vorticity iq && 2p
& sin8068. Given the relation between vorticity
transport and dissipation in superfluids, ' ~'"
the possibility of an instability with q w0 merits
special attention.
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