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Maximum Expansion Velocities of Laser-Produced Plasmas
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Comparisons of observed ion velocity maxima with predictions of theoretical models
suggest that departures from ideal isothermal expansion behavior are caused by nonequi-
librium critical-surface electron distributions.

In the designing of ablatively driven, laser-
fusion targets, the character of the electron dis-
tribution at the critical surface as it affects ener-
gy transport and momentum transfer in the ex-
panding plasma is a critical factor. We present
experimental evidence of a truncated, non-Max-
wellian electron velocity distribution at the criti-
cal surface. A sharp velocity maximum in the
ion expansion has been observed. In this Letter,
two theories are presented which can explain this
phenomenon: first, the effect of charge separa-
tion and second, the impact of a truncated Max-
wellian electron distribution.

The latter mechanism gives better correlation
with the experimental data. The data were ob-
tained by measuring the ion expansion from pla-
nar targets irradiated with short (50 psec) Nd-
laser pulses. The plasma is approximately pla-
nar during the laser pulse because the expansion
dimensions are on the order of, or less tha, n, the
focal-spot radius (100 pm). The electron thermal
conductivity in the hot expanding plasma is suf-
ficiently large and the electron-ion cross relaxa-
tion sufficiently low that the plasma region tends
to be isothermal with T; /T, =0 during the laser
pulse. '

Figure l(a) is a sketch of a typical profile along
a line through the middle of the focal spot and
normal to the target surface, for the laser power
levels considered here, for which, as the data in-
dicate, flux limiting near the critical surface is
not significant.

The distribution of the faster plasma ion veloc-
ities at the time of the end of pulse arrival is ap-
proximately retained in subsequent expansion be-
cause the flow is quite supersonic and the inter-
nal energy is, therefore, much less than the ki-
netic energy, and thus incapable of having a sig-
nificant effect on the final expansion velocities.

It should, therefore, be expected that observa-
tions of the faster part of the expansion, which

comes from the higher-temperature region,
would approximately obey the well-known self-
similar solution for isothermal planar expansion
of a semi-infinite medium,

N; =exp(-$)

U =)+1, (2)

shown in Fig. 1(b) in solid lines. From (1) and
(2) the velocity distribution at a remote detector
would be

dN; /dU exp(- U).

K, =ZN;,

N, = exp(g).

(4)

(5)

The self-consistent electrostatic field through
which electron pressure gradients accelerate the
lons 1S

8$ 8N, E„
m;Cg/Ze&t

'

Equations (1), (4), (5), and (6) give 8 =1 [see
Fig. 1(b)j for this pure Maxwellian case.

Here N; =n;/n;» —N, =n, / ,nc$ =x/Czt= x/xz (the-
similarity variable), Cz -=(ZkT, /m;)"', U—= v;„/
Cz, and g=—ey/kT„where T, is electron temper-
ature, Z and m; are ion charge and mass, re-
spectively, and x is the distance from the initial
target surface; &„,y, and v;, are the electric
field, electric potentia. l, and ion flow velocity,
respectively. Here n„n;,n, o, and n;0 are elec-
tron and ion densities and their values at the
sonic point, x =O. Finally &t, assumed to be on
the order of the pulse length, is the period dur-
ing which &, in the isothermal region remains
near its peak value.

In deriving Eqs. (1) and (2), charge neutrality
and a Maxwellian electron distribution are as-
sumed, i.e. ,
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TABLE I. Average experxmental paramrameters and

comparisons with theory.

3.0-

Power
Pulse length
Isothermal Te
Isothermal sound speed, Cz

Maxwellian ion velocity, V;~
U~ (=—V )~ /C i)

U [= (sheath velocity)/Ci J

+ed ed eo
=N n (distribution

cutoff density)

V«z/V«& (cutoff velocity)
at critical surface)

10i4 W/cm
50 ps
2.5 keV
4,9x 10' cm/sec (H+)
2.5x 10~ cm/sec (C6+)

27x10 cm/sec (H+)
5.5 (H')
7.8 (C )

21.9 ~

19.6 "
17.3
10"cm ''
4.1x10"cm 'b
10"cm"
O.94 ~

1.79 '
2.34

2.0—

1.0—

- l.o 0~Sonic Point

FIG. l. (a) Form of typical profiles normal to the
target surface. ( ea 1

(solid lines) of an initally homogeneoussion profiles (so x i
semi-infinite plasma (long-dashed linei mo x re y
charge separation sheath at E~ ( o e znes
fied at q& y a no-d t q b a non-Maxwellian electron distribution
(broken lines).

For n, o
——10 cm23 -3

b For n„=1O cm22 -3

For n 0=10 cm2i -3
eo

Equation zmi3g plies a smoothly decreasing
number of sons up to arbitrarily large (nonrela-
tivistic ve ocr res.1 t By contrast, a Thomson-
parabola analyzer and a photomultiplier fluores-
cer combination o'

n both show a clearly defined ion
velocit maximum on each shot (see Table I .

Two mechanisms could modify the ideal iso-
thermal behavior described above in a way that

1d 1' t velocities to observable maxima:
(1) charge separation resul '

g
'sultin in breakdown of

Average parameters from a cons'iderable num-
f1 t CH targets are given in Table

ure 2 shows velocity distributions obtaine
from Faraday-cup traces taken on w

' f rent eak power. Both clearly show the ex-
e ansion.ponen ia ormt' 1 form [E(I. (3)]of isothermal exp

on theValues of dN /d V above the da. shed line on e
left come from e igth h' her -density nonisother mal
side of the ablation front [Flg. 1(a)].1~a&~. The abso-
lute magnitu e od f dN /d V depends on the sonic
point density, n;0 ig.t, . [Fig. 1(b)] which occurs on
the lower-density side of the ablation front ap-
proximately w ereh the isothermal region begins.

io of n to the peak density on the dense
side of the front varies with absorbed power an

f 10 ' to 10 ' in cases of interest. 'ranges from o
shed-CI and e &n &gF' 2 are obtained from the das e-

line slopes and Eq. (3).

lo' I ~I&
~i

0

I I I

&) C = 3.l2 x lO~ cm/secI

T, = 2.03 x los eV

dN

dv b) C = 2.80 x l0 cm/secI
Te= l.64 x lO eV

lo'- ~ i

i i i I l I | I I II I

0 l.o 2.0 2.5
V„(xlO cm/sec)

IG. 2. Faraday-cup currents, dN/dV,dV as a function
1 't V f r two shots with different laserof ion velocity, , or w

pulse energies.
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U, =2[1+ln(V 2 ~~;,b.t)j,

co~„=(4~n;,Z'e'/m;) "' (9)

These modifications of isothermal expansion
which violate self-similarity are sketched as
dotted lines in Fig. 1(b)~

Mechanism II, absence of the Maxwellian tails
of the electron velocity distribution, also limits
ion velocities by truncating the exponential den-
sity profiles of an isothermal expansion, but does
so by effectively modifying the electron pressure
equation of state. Under those quasistatic con-
ditions the electron velocity distribution can be
written as f,(e,), where 8,—= ~m, V,' —ey is the
electron energy. If the tials of the otherwise
Maxwellian f, - exp(- e, /M", ) of this almost col-
lisionless plasma are eut off at ~, =~«, the ve-
locities will be cut off at t/«.

1« = I sth[(e«+e'P)/~+8]

V„„-=(2a r, /m, )",
with V„I,the thermal velocity. Wherever &«
» —esp, f, is essentially Maxwellian with temper-
ature T',. However, as —ey approaches ~,&,
which occurs near the point $ =)& where the den-
sity is truncated [see Fig. 1(b)], V«/V„h ap-
proaches zero, which is equivalent to having the
effective temperature, i.e., the mean thermal en-

Eq. (4) at low densities; and (II) absence of the
high-temperature Maxwellian tails of the electron
velocity distribution, resulting in modification of
Eq. (5), at low densities.

Mechanism I, charge separation, limits the
ion velocities by forming a nonneutral electro-
static sheath which truncates the exponential den-
sity profile at a point, $„nearwhere the Debye
length, &D [—= (4~n, e'/m, )' '], equals the density
scale length, Cl &t. Charge neutrality and, there-
fore, coupling of electron pressure to the ions
should be expected to fail at this and lower den-
sities. Self-consistency requires this truncation
if the vacuum E„field is very different (usually
much less) from E„[Eq.(6)j in the expanding
plasma. This effect was first seen in numerical
simulations. An analytic theory derived by the
authors gives modified profiles,

N; =[4e'+e 'exp(- ~'/2)j,

N, =o, 5 5)„
U = 1+& + e, e -=exp($ —$,),

which closely resemble the simulation solutions, '
and a maximum ion-sheath velocity at $, of

~ = (~ (N, dy/dN, )"'.
(11)

(12)

Equations (11) and (12) are solved, together with
Eq. (6) relating P and $, by assuming charge neu-
trality, N, =N;, because when Mechanism II is
operative it will occur at higher densities than
those involved in Mechanism I. The resulting
modified density and field profiles, N;($) and
e($), go to zero a.t some finite $ =(&, and U($) is
also modified, as sketched in broken lines in Fig.
1(b). For $ near $&, i.e., for 0& $-(&«1, the
step inf, givesN, ($) (g-g&) 'and Eqs. (6), (11),
and (12) give (U &-U), S,N; ($& 5). H-ere $~
—= —e«/kT, and U & is the maximum ion velocity
determined by the distribution cutoff at e«(re-
call (&0). For less abrupt cutoffs N; (( —g,)",
p, ) ~, and N; ($&-$)'". These modified isother-
mal expansions retain self-similarity. Conse-
quently, U„& is independent of pulse length, &t.
From the above forms of Nq and%, near &&, the
second term in Eq. (12) is zero at $„and

U u=(~

The density at which truncation of the expanding
plasma occurs, i.e., the density that would be
found at (& if the truncation did not occur, can
now be obtained from Eqs. (14) and (1) and from
the charge neutrality:

N,„N;„=xp(- U„„). (14)

The &, in Table I is obtained from CI of the
predominant plasma species, C", but values of
CI and U for this T, in H' are also shown and
are used in calculating N, d because the fastest
ions are O'. The uncertainty introduced by this
complication is not large enough to affect quali-
tative conclusions. Values of U„,from Eq. (9)
are shown for different values of the sonic elec-
tron density, n„,within the plausable range [see
discussion above Eq. (8)j. The logarithm in Eq.
(9) makes U, so insensitive to experimental pa-

ergy, decrease to zero. Thus, the electron pres-
sure at a given density is decreased relative to
the Maxwellian pressure at temperature &,. In
this modified isothermal system it is, therefore,
f,(e,) which is independent of position while near
$& the effective temperature decreases from &,
to zero.

A generalization of the procedure that led to
Eqs. (1) and (2) gives
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rameters and the observed scatter in values of
U is sufficiently small that the ratio of 3 or 4
between values of U, and U appears significant
and makes it difficult to believe that mechanism
I is responsible for the observed ion-velocity
maxima.

Considering mechanism II, the Table I values
of the cutoff density n, d, are obtained from Eq.
(14) for N,„,the average measured U, and the
range of n„.These values of n,& range from just
below the critical density, n«=10" cm ', to
much less. The velocity at the critical surface,
V„&,of the electrons with the cutoff energy &,&,

is particularly interesting and can be calculated
by using the fact that these electrons have zero
kinetic energy at the tip of the truncated density
profile, $ =$ ~. Using the uniform field of the pure
Maxwellian solution, i.e., 8 =1 or E„=m;C&/
Ze&t [see below Eq. (6); see also Eq. (10)], to
calculate the potential energy between the critical
surface and g =)& (a good approximation if N, &

«N„)gives

l'„„=V„h[ln(N„ /Ng)]+2.

Values of V„&/V„h in Table I for the range of
n„values indicate that the electron velocity dis-
tributions produced at the critical surface are
truncated at between about 1 and 2 times the
thermal velocity. Such truncation suggests the
wave-breaking mechanism that is believed to ac-
company resonant absorption. ' No velocities are
produced above the crest of the wave in phase
space. 4

The assumptions and implications of mechanism
II are consistent with theory and recent experi-

mental results. Thus, truncation of the Maxwel-
lian electron distribution is the more likely ex-
planation of the definitive maximum ion velocity
in the plasma expansion from laser-irradiated
planar targets.
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