
VOLUME 40, NUMBER 25 PHYSICAL REVIEW LETTERS 19 JuNE 1978

where

Q, = -y(5x'+ 1), Q, = 2x(3x'+ 8y'+ 1), Q, = -4y(11x'+ 2y'+ 1), g, = 8x(5x'+ 12y'+ 1) . (12)

Higher k's repeat in this case also. All P ~ 's, k -4, can be reduced to multiples of P& ), P&', P&'), P&').

The TS solution previously known corresponds to the restrictions P&') = —12P&'), P&') = P&" = 0. The
complete solution we will now be able to generate from 5= 2 will contain five arbitrary parameters in-
cluding the mass. %hen the NUT parameter is excluded, we will have a four-parameter asymptotically
flat metric, As an example, we give the solution corresponding to P&') = —4P&'), P&') = P&3) =0:

4ix(x' —1) —4Py (x' —y')
(x + 1)'(x' —1) —2i Py (x + 1)(x' —2x +y') —P'(x' —y')'

The complete 5= 2 solution plus further details will be published elsewhere. ' This work was sup-
ported by the National Science Foundation under Grant No. PHYV6-12246.
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The edge of the gap in the distribution of Yang-Lee zeros at B=iHO(T) on the imaginary
magnetic field axis in ferromagnets above Y', is essentially a critical point. In terms of
the edge exponents 6 and q, the density of zeros obeys 8 &H") - [H" —Ho(T)], with o.

=1/6=(d —2+@)/(d2 —q). Classical behavior (a=~) occurs for d&d =6. The appropriate
field-theoretic renormalization. group entails a my coupling and, with e = 6 —d —0, yields
q = —e/9 for all n & ~. This correlates well with refined series estimates for d =2 and

d=8 and with exact results for d= 1 (q= —1),

Consider the magnetization, M(H, T), of a fer-
romagnet at fixed temperature T. According to
Yang and Lee, ' the analytic behavior of M (FI, T)
as a function of the magnetic field H can be under-
stood by studying the asymptotic distribution of
the zeros of the partition function in the complex
magnetic-field plane (H', H") = (Re[H], Im[H]).
Very generally, the distribution of zeros in the
thermodynamic limit is expected to concentrate
on curvilinear loci in the complex field plane; in-
deed, for a variety of models of a ferromagnet, ' ~

including Ising models' and spherical models, it
is known rigorously that the zeros concentrate on-
ly on the imaginary axis, H =i&". In that case
the magnetization for all real and complex H can
be expressed as an integral over g(II";T), the
asymptotic density of zeros. Below the critical
temperature T„one has g(0;T) &0 and the mag-

netization as a function of real field exhibits a
first-order transition with a jump 2M, (T) o"- g.(0;
T).

On the other hand, for T &T„ there is agap of
width 2H, (T) in the distribution of zeros, and
M(FI, T) is analytic for )Im(H)~ &H, (T). The edges
of this gap, at H = + iH, (T), must be branch points
of the function M(H, T); Kortman and Griffiths'
have pointed out the interest in determining the
nature of these branch points, which we term the
Yang-I ee edge singularities. Since these are the
signularities closest to the real axis, they play a
dominant role in determining the observable be-
havior of M for realII and T. Indeed they should
enter into the asymptotic equation of state near
the critical point, although it transpires that none
of the equations proposed for d &4 in the current
literature contain the correct singularities t
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More concretely, suppose the density of zeros
varies as

8(H )-(H" H-(T))

where II -Ho+; then the magnetization exhibits
a branch point of the form ~ -h' with

m =M -M(iH„T) and 0 =H iH,-(T). (2)

The value of the exponent cr, its universality, its
dependence on the dimensionality, d, and the sym-
metry number, n, of the ferromagnet, and its
relationship, if any, to critical exponents describ-
ing the real, directly observable singularities,
are the topics of this Letter.

It will be argued that the edge singularities are
closely analogous to ordinary critical points and

that corresponding scaling laws and exponent re-
lations, for example,
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are applicable. This can be checked explicitly
for the@ =1 Ising model where o = —2, for all T
&T,=O; however, a consideration of mean-field
or Landau theory indicates that the appropriate
critical point is that associated with a y', rather
than with the usual y4 theory. This fact leads to
a crossover dimensionality d" = 6, above which
the classical mean-field value o =+—,

' applies. A
field-theoretic renor malization-group treatment
is then possible and yields

a d o1 1 1 (4)

to first order in e = 6 -d () 0); in second order
the correction factor for g is 1+ac, with a = &.

More generally the values of the exponents at
the edge singularity are seen to be independent of
the symmetry number, or number of components,
z, of the original order parameter, s, provided
that n &~. The limit n- ~ corresponds to the
spherical model where, in fact, o=+& applies for
all d.4 (The nonuniformity of the n- ~ limit for
d &6 is puzzling and not yet understood. ) The
variation of o and g with d according to this anal-
ysis is shown in Fig. 1. The solid bars for d =2
and 3 correspond to new high-temperature-ser-
ies-expansion estimates for Ising models which
extend and refine previous results of Kortman
and Griffiths' for the square (d = 2) and tetrahe-
dral (d = 3) lattices (shown by []). The numerical
estimates evidently accord well with the analyti-
cal expectations.

To develop the arguments, consider first the
universality of o for T &T,: This is certainly to
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FIG. 1. Variation of the Yang-Lee edge exponents 0.

and g with dimensionality d. (i) The heavy black dots
and solid lines correspond to exact and renormaliza-
tion-group results [see Eq. (4)]; (ii) the light dotted
and broken (dashed) curves represent the approxima-
tions q=0 and g= —-e, with e = 6-d, inserted in Eq.
(3); (iii) the dashed-dotted curve results from the
two-point Pade approximant g= —5e/(45- 4e), based
on Eq. (4) and q(l) = —1; (iv) the solid bars for d = 2
and d = 3 represent new numerical estimates derived
from high-temperature-series analysis for a range
of lattices; (v) the more widely spaced error limits
indicate the estimates of Kortman and Griffiths for
the square and tetrahedral lattices (Ref. 5).

be expected on heuristic grounds. In addition, it
may be checked explicitly for (i) the nearest-
neighbor Ising chain, and, using matrix or inte-
gral kernel methods, ' for (ii) one-dimensional
models of general n (&~); and, for alla, in
(iii) spherical models (n =~),~ and (iv) mean-
field models. ' Kortman and Griffiths' have also
checked the numerical constancy of o to within
+0.05 for T not too close to T„ for the square
and tetl ahedral Ising lattices. Finally, for all pg

&~, universality follows within the renormaliza-
tion group, at least for small &=6-d, from the
relative stability of the fixed point describing the
edge singularity.

At the critical point in zero field, however, the
gap in the distribution of zeros vanished and one
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must expect v to take on a different value, say
a'. Indeed (2) then yields M -H' so that 0'= 1/
5, where 5' denotes the standard critical ex-
ponent for the critical isotherm (with 6'= 15 for
d=2, n=1, and 6'= 3 for d&4, all n). That v'ev
may likewise be checked in all the cases (i) to
(iv) above.

The idea that the edge singularity should be re-
garded merely as a critical point occurring at a
complex or imaginary magnetic field is natural
if, following Kortman and Griffiths, ' one notes
that (2) implies that the susceptibility y= BM/BH
diverges as 1/h' ' when h =H —iH, —0, provided
that o (1 (which seems generally true). By ana-
lytic continuation of the pair correlation function,
G(R;H, T), it follows that the correlation length
also diverges, say as $ -1/h "c, and that G(R) de-
cays slowly at the edge singularity, say with ex-
ponent g. Standard heuristic scaling arguments'
then suggest

G(R;H, T) ={s,~ s, ) -(s,)'

~g)(Rh c)/R

as h, I/R -0. Indeed for (i) the linear-chain Ising
model, this is precisely confirmed with exponents
q = —1,v, = ~, and scaling function D(w) =Ae s /
se'. Likewise d-dependent, hyperscaling argu-
ments' lead to the exponent relation (3) and to v,
= 2/(d+2 -rf), both of which are verified by the
values quoted.

Now it is known that hyperscaling relations like
(3) generally fall at borderline or crossover di-
mensionality, d, and become inequalities [with
the second "=" in (3) replaced by "("]for d &d".'
Furthermore, one may determine d" heuristical-
ly' by inserting the classical or mean-field val-
ues and solving for d. Putting g= 0, on general
grounds, and' o =-,' (see also below) in (3) yields

=6. This is confirmed by renormalization-
group analysis.

To set up a field-theoretic renormalization
group it is essential to understand the classical
or Landau phenomenological theory and to recog-
nize that the desired critical behavior, namely a
divergent susceptibility, must be sought at a, com-
plex value of the magnetic field. However, intro-
duction of any magnetic field, real or complex,
breaks the original O(n) symmetry, which means
that the singular behavior (at least for n(~)
should be the same as for n=1 or Ising-like sys-
tems. Integral kernel methods enable one to
check this directly' when d = 1. Accordingly, we
may take scalar spins, s„, and consider the

standard reduced Hamiltonian density'

KR =HsR —2rsR —~e(VsR ) -usR2 2 (6)

in which, in contrast to the usual analysis, "the
real parameter r = C (T -T,) is to be held fixed
and Poslfi've.

For the classical, fluctuationless theory, set
e =0 and, to find a divergent susceptibility, put
sR ~s„+m, . A pure imaginary shift, m, = —,i(r/
3u)'I', eliminates the quadratic term in (6) and
generates a cubic term -ms R' with w = 2iu(r/
3u)"'. With m = {s,) -m, and H, (T) =u(r/3u)'I',
the equation of state is then seen to be h —= (8
-iH, ) ~ 3@m . The residual fourth-order term,
us, plays no role asymptotically. Thus X di-
verges likeh ' ' ash-0 and so 0= —,'.

These considerations demonstrate that, for a
field-theoretic calculation, "in Fourier space,
it suffices to consider

X=hso 2f (r—+eq )s sq

—K fqf &e &ss qsl& &i, (7)

with z=-0 and e =—1. However, one must expect zv

to be purely imaginary at the appropriate fixed
point. " Of course, additional fourth-order terms
are required for stabilization, but these turn out
to be irrelevant for d) 6 and small ~. It is now
straightforward to use perturbation theory in ze

to construct a momentum-shell integration re-
normalization group" with a spatial rescaling q
~ q'/b. A shift and spin rescaling, s„~m6
+ IQ $ qt are required to maintain z' =r = 0 and e
=e —= 1. (Note that one more condition is imposed
than at a normal critical point. ) In zeroth order
one finds c'ccb~"+ 1 so that 11 =O(te') which
leads to the recursion relations h'~b " ' "h and
ge't=b@'se with e =6-d. This confirms d =6 as
the borderline dimensionality.

A first-order calculation, involving graphs with
one, two, and three third-order vertices, yields
r1 ~ 6K,zo' and a fixed point h* = —,'K~A'Ev*, and re*
=i ~'e/(54K, )"' (where qA is the cutoff momentum
and K, is the area of a unit sphere at d = 6). These
results imply g ~ —e/9 [see (4)]; the hyperscaling
relation (3) is checked directly by the eigenvalue
y, = 1/v, ~4 —ve-= —', (d+2 —q).

An alternative renormalization-group proce-
dure imposes h' =h = 0 and allows r to vary in (7).
This leads to completely equivalent physical re-
sults although some surprisingly singular renor-
malization-group flows are encountered. It is
also possible" to adapt Amit's dimensional regu-
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larization calculation" by relaxing his Potts-
model constraint [and putting o. ,=P, =P, =Q», e0
in his Eqs. (6.1)-(6.3) et seq. ]. This confirms (4)
and yields the second-order term quoted.

Finally, as demonstrated by Kortman and Grif-
fiths, ' the exponent o may be estimated numer-
ically for Ising models by studying the high-tem-
perature series for X with purely imaginary field
and varying temperature. However, if the tem-
perature independence of o is accepted, more ac-
curate results can be found by studying the high-
temperature limit of the series. If one sets z
=tanh(J/ksT)[tanh(FI/ksT)]', where J' is the near-
est-neighbor coupling, one finds" that the expan-
sions then reduce to those for the monomer-di-
mer problem' on the same lattice at dimer activ-
ity z. It follows that the Yang-Lee zeros for the
dimer problem must lie on the negative z axis"
and the dimer density, p(s), must exhibit a branch
point of the form p, +A(z -z,)'. Long series are
available for the monomer-dimer problem'+" on
various lattices. From ratio analysis' of expan-
sion coefficients for the square (17 terms), tri-
angular (14 terms), tetrahedral (16 terms), sc
(15 terms), bcc (13 terms), and fcc (10 terms)
lattices the following estimates have been ob-
tained:

a= —0.155+0.010 for d =2,

o = 0.098 + 0.012 for d = 3.

Within their quoted uncertainties of + 0.050,
these compare well with the Kortman-Griffiths
estimates' of 0=-—,

' (d=2), +-,' (d=3); see Fig. l.
Independent estimates for the square and triangu-
lar lattices differ by about 0.006; likewise, in
three dimensions lattices of larger coordination
number suggest values 0.006-0.012 higher. These
differences, however, are within the extrapola-
tion uncertainties; so there are no serious grounds
for doubting that v is truly lattice independent.
Pade-approximant analyses of various logarith-
mic derivative series' yield consistent results.
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