200 ps, i.e., approximately the same as the lifetime of the free Λ particle. In any event, the present experiment provides an upper limit of about 20 μ b for the 0° production cross section of other γ -emitting hypernuclear states in the (K^- , π^-) reaction at 1.7 GeV/c, and demonstrates conclusively that present technology is sufficient to measure such small cross sections in particle- γ coincidence experiments with currently available kaon beams.

This work was supported by the U. S. Energy Research and Development Administration under Contracts No. EY-76-C-02-0016 and No. EY-76-S-02-2894.

^(a)Present address: Physics Department, University of Notre Dame, Notre Dame, Ind. 46556.

^(b)Present address: Lawrence Livermore Laboratory, Livermore, Calif. 94550.

¹A. Bamberger *et al.*, Phys. Lett. <u>36B</u>, 412 (1971), and Nucl. Phys. <u>B60</u>, 1 (1973).

²M. Bedjidian *et al.*, Phys. Lett. <u>62B</u>, 467 (1976). ³H. Feshbach and A. K. Kerman, in *Preludes in*

Theoretical Physics, edited by A. De-Shalit, H. Feshbach, and L. Van Hove (North-Holland, Amsterdam, 1966), p. 260.

⁴H. J. Lipkin, Phys. Rev. Lett. <u>14</u>, 18 (1965).

⁵C. Chasman, K. W. Jones, and R. A. Ristinen, Nucl. Instrum. Methods <u>37</u>, 1 (1965).

⁶C. L. Wang *et al.*, to be published.

⁷A. Gal, J. M. Soper, and R. H. Dalitz, Ann. Phys. (N.Y.) 72, 445 (1972).

Difference in Analyzing Powers for (p,t) Reactions Due to a Phase Change of Interference between Direct and Indirect Processes in Two-Nucleon Transfer Reactions

K. Yagi, S. Kunori, Y. Aoki, Y. Higashi, J. Sanada, and Y. Tagishi

Institute of Physics and Tandem Accelerator Center, The University of Tsukuba, Ibaraki 300-31, Japan (Received 14 September 1977)

A marked difference between analyzing powers for reactions ${}^{128}\text{Te}(p,t){}^{126}\text{Te}(2_1^+)$ and ${}^{110}\text{Pd}(p,t){}^{108}\text{Pd}(2_1^+)$ with polarized protons has been observed, while the ground-state transitions have shown similar analyzing powers. The difference is accounted for as a result of a phase change of the interference between direct and inelastic multistep processes in two-neutron pickup reactions. The origin of this phase change is elucidated on the basis of the microscope description of the collective quadrupole oscillation of nuclei.

The interference between a direct process and inelastic multistep processes (nucleon transfer followed by inelastic scattering and the inverse) in two-nucleon transfer reactions is guite sensitive to the nuclear structure involved. The neutron-number (N) dependence of this type of interference in excitation of the first 2^+ (2_1^+) states has been extensively studied for the nuclei of N $\approx 82-50$ by using (p, t) reactions on the isotopes of $^{A+2}Nd(A+2=150-142)$, $^{1,2}Te(A+2=130-142)$ 122),^{3,4} Sn(118, 116),^{3,5} Cd(116-112),^{3,5} and Pd(110-104).^{5,6} In consequence, a phase change from constructive to destructive interference has been found in the Pd isotopes.⁶ The phase change has been interpreted as a result of a sign change of the form factor of the direct transfer process in going from Te, Sn, and Cd to Pd isotopes on the basis of the BCS and quasiparticle-RPA (random-phase approximation) model.^{6,7}

The experimental and theoretical results mentioned above are all due to the measurements of the differential cross sections of the (p,t) reactions leading to the ground states (0_{ε}^{+}) and the 2_{1}^{+} states. Measurements of analyzing powers for (p_{pol}, t) reactions leading to the same 2_{1}^{+} states are expected to provide a sensitive probe to detect whether the nature of the interference is constructive or destructive. Such measurements are of fundamental importance in understanding the microscopic structure of vibrational characters⁵ of nuclei as well as the reaction dynamics of the processes.

Analyzing powers for the reactions ¹²⁸Te(p_{pol} , t)¹²⁶Te(0_g^+ and 2_1^+) and ¹¹⁰Pd(p_{pol} , t)¹⁰⁸Pd(0_g^+ and 2_1^+) were measured at $E_p = 22.0$ MeV. The nuclei ¹²⁸Te and ¹¹⁰Pd were chosen as targets because the previous measurements of the differential cross sections showed that the ¹²⁸Te(p, t)¹²⁶Te(2_1^+) transition^{3,4} had constructive interference while ¹¹⁰Pd(p, t)¹⁰⁸Pd(2_1^+)⁶ had destructive. A polarized proton beam was produced with a Lamb-shift ion source⁸ and was accelerated with the University of Tsukuba 12UD Pelletron. The beam intensity was about 50 nA on target and

FIG. 1. Experimental and calculated analyzing powers $A(\theta)$ and cross sections $\sigma(\theta)$ for reactions ${}^{128}\text{Te}(p, t)^{126}\text{Te}$ and ${}^{110}\text{Pd}(p, t){}^{108}\text{Pd}$ at $E_p = 22.0$ MeV. The 0_g^{+} transitions are in (a) and the 2_1^{+} transitions in (b) and (b). The crosses [circles] are for ${}^{128}\text{Te}(p, t)$ [${}^{110}\text{Pd}(p, t)$] transitions. The solid [dashed] curves are CCBA calculations of $A(\theta)$ and $\sigma(\theta)$ for the ${}^{128}\text{Te}(p, t)$ [${}^{110}\text{Pd}(p, t)$] transitions.

the degree of polarization of the proton beam was $(85\pm2)\%$. The ¹²⁸Te and ¹¹⁰Pd targets were enriched metallic films of 0.5 mg/cm² thickness. The emitted tritons were analyzed with a magnetic spectrograph and detected with a silicon position-sensitive detector mounted in the focal plane. The energy resolution was 40 keV with an angular spread of $\Delta\theta = \pm 1.5^\circ$.

Angular distributions of the analyzing powers $A(\theta)$ are shown in Figs. 1(a) and 1(b). The most striking features of the $A(\theta)$ observed are the following: (i) A pronounced difference exists between the $A(\theta)$ for ¹²⁸Te(p_{pol}, t)¹²⁶($\mathbf{2}_1^+$) and ¹¹⁰Pd(p_{pol}, t)¹⁰⁸Pd($\mathbf{2}_1^+$) transitions, viz., the sign of the analyzing power is almost opposite in the two cases [Fig. 1(b)]; (ii) on the other hand, the $A(\theta)$ for the ¹²⁸Te(p_{pol}, t)¹²⁶Te($\mathbf{0}_g^+$) transition is quite similar to that for the ¹¹⁰Pd(p_{pol}, t)¹⁰⁸Pd($\mathbf{0}_g^+$) transition [Fig. 1(a)].

The (p_{pol}, t) transitions to the 0_g^+ and 2_1^+ states are analyzed in terms of coupled-channel Bornapproximation (CCBA) calculations.⁹ Under the

FIG. 2. Radial dependence of transfer form factors $F_0(0_g^+ \rightarrow 0_g^+)$ and $F_2(0_g^+ \rightarrow 2_1^+)$. On the right side for the F_2 , dashed and dotted curves show the contributions from the RPA forward- and backward-scattering amplitudes, respectively, and solid curves are sums of the two contributions.

BCS and quasiparticle-RPA model the nuclear wave functions for the 0_g^+ and 2_1^+ states are constructed by using both the monopole pairing interaction and the Q-Q interaction.¹⁰ Details on the procedure are found in Refs. 4, 5, 7, and 11. Transfer form factors $F_0(0_g^+ \rightarrow 0_g^+)$ and $F_2(0_g^+ \rightarrow 2_1^+)$ together with the contributions to $F_2(0_g^+ \rightarrow 2_1^+)$ from the RPA forward- and backward-scattering amplitudes are shown in Fig. 2. Form factors for transitions between the 2_1^+ states are assumed to be proportional to those of the ground-states transitions as in the cases of Refs. 4 and 6.

It should be noted that the radial form factor $F_2(0_g^+ \rightarrow 2_1^+)$ at the nuclear surface $(r \sim 6 \text{ fm})$ changes its sign in going from ¹²⁸Te(p, t) to ¹¹⁰Pd(p, t), while the other form factors $F_0(0_g^+ \rightarrow 0_g^+)$ and $F_L(2_1^+ \rightarrow 2_1^+)$ do not. The sign change is ascribed to an increase of the contribution from the backward-scattering amplitudes in the Pd isotopes (Fig. 2). This change can be traced to the sign change in the spectroscopic amplitude for the direct transfer process,¹²

$$B(jj'; 0_g^+(A+2) \to 2_1^+(A))$$

= $\sqrt{5}[-V_jV_j \cdot x(jj') + U_jU_j \cdot y(jj')],$

where the x's and y's are the forward- and backward-scattering amplitudes in RPA, respectively, and V_j (U_j) is the occupied (unoccupied) amplitude of the *j* orbit. The amplitude *B* is determined by the competition between the forward contributions VVx and the backward contributions UUy. The latter exceeds the former¹³ in the case of the Pd isotopes because (i) the UU are larger than the VV near the beginning of the major shell N = 50-82, and (ii) the *y*'s become considerably large because of an increase of ground-state correlations in the Pd isotopes; indeed deformation parameters β_2 for the quadrupole oscillation of the Pd isotopes are as large as¹⁴ $\beta_2 = 0.25$. The spectroscopic amplitude for the inelastic transition in the multistep processes is expressed as

$$B(jj'; 0_g^{+}(A) \rightarrow 2_1^{+}(A))$$

$$\propto U_j V_j X(jj') + V_j U_j Y(jj').$$

Therefore the inelastic form factor at the nuclear surface does not change its sign in going from Te to Pd isotopes. ¹³ Actual calculations for the analyzing power and cross section for the 2_1^+ state of ¹⁰⁹Pd are done by the use of the form factor $F_2(0_g^+ \rightarrow 2_1^+)$ which has been determined⁶ by fitting the experimental 2_1^+ cross section for 52-MeV protons. ¹⁵

Optical-potential parameters for protons are obtained from the work of Becchetti and Greenlees¹⁶ and those for tritons are from Flynn *et al*.¹⁷ Calculated analyzing powers are shown in Figs. 1(a) and 1(b). The essential features of the experimental analyzing powers described in (i) and (ii) (similarity between the two 0_g^+ transitions and difference between the two 2_1^+ transitions) are well reproduced by the calculations, although there is room for improvement in fitting the 2_1^+ analyzing powers.¹⁸ In addition, the 2_1^+ cross sections [Fig. 1(c)] are also well reproduced by the CCBA calculations both in angular distributions and intensities.

In conclusion, analyzing powers for (p_{pol}, t) reactions are very powerful for detecting the interference mode (phase) between direct and inelastic multistep processes in two-nucleon transfer reactions. The difference between constructive and destructive interference appears distinctly as a difference in sign of the analyzing powers. The phase change of the interference is attributed to the neutron-number dependence of the occupation probability of single-particle orbits and that of ground-state correlations of the quadrupole oscillation of nuclei. In this sense the $(p_{\rm pol}, t)$ analyzing power is a sensitive probe for detecting the microscopic characteristics of collective oscillations of nuclei.

¹K. Yagi, K. Sato, Y. Aoki, T. Udagawa, and T. Tamura, Phys. Rev. Lett. 29, 1334 (1972).

²T. Udagawa, T. Tamura, and T. Izumoto, Phys. Lett. <u>35B</u>, 129 (1971).

³K. Yagi, Y. Aoki, C. Rangacharyuly, M. Matoba, and M. Hyakutake, Phys. Lett. 44B, 447 (1973).

⁴T. Izumoto, Y. Aoki, C. Rangacharyuly, K. Yagi, M. Matoba, and M. Hyakutake, Phys. Lett. <u>57B</u>, 17 (1974).

 5 K. Yagi, Y. Aoki, T. Izumoto, S. Kunori, and M. Sano, in Proceedings of the International Conference on Nuclear Structure, Contributed Papers, Tokyo, 1977 (to be published), pp. 532, 533, 534.

⁶K. Yagi, Y. Aoki, M. Matoba, and M. Hyakutake, Phys. Rev. C <u>15</u>, 1178 (1977).

⁷T. Izumoto, Prog. Theor. Phys. <u>52</u>, 1214 (1974). ⁸Y. Tagishi, and J. Sanada, in *Fourth International Symposium on Polarization Phenomena in Nuclear Reactions, Zürich, 1975: Proceedings*, edited by W. Grüebler and V. König (Birkhauser Verlag, Basel, 1976), p. 860.

⁹M. Toyama and M. Igarashi, computer code TWOSTP; P. D. Kunz, computer code CHUCK (private communication).

 10 The Q-Q strength is chosen so as to reproduce the excitation energy of the 2_1^+ states.

¹¹T. Udagawa, Phys. Rev. C 9, 270 (1974).

¹²S. Yoshida, Nucl. Phys. <u>33</u>, 685 (1962).

¹³It can be proved that the x's have the same sign as the y's in the case of the collective lowest 2⁺ (2₁⁺) state under the pairing plus Q-Q interactions; see, for example, S. Yoshida, Nucl. Phys. <u>38</u>, 380 (1962). In addition, V and U are defined as positive.

 $^{14}\mathrm{P.}$ H. Stelson and L. Grodzin, Nucl. Data, Sect. A <u>1</u>, 21 (1965).

 15 Because of large anharmonicity in the quadrupole oscillation of Pd isotopes, the RPA wave function is not very good for describing the 2_1^+ state. See Refs. 5 and 6 for details.

¹⁶F. D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. <u>182</u>, 1190 (1969).

¹⁷E. R. Flynn, D. D. Armstrong, J. G. Beery, and A. G. Blair, Phys. Rev. <u>182</u>, 1113 (1969).

¹⁸The inelastic multistep processes are expected to be the most important of the indirect processes because of the large inelastic-scattering cross sections in Pd and Te isotopes. However, the indirect effect due to sequential transfer processes should be evaluated in obtaining more accurate fitting.