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For stationary axially symmetric vacuum metrics, we give a series of transformations
P(k) which automatically preserve asymptotic flatness. We show how to generate the Kerr
metric from the Schwarzschild, using P(). We also show, using P, that the Tomima-
tsu-Sata (TS) class of metrices must be larger than previously realized, and for 5 =2
there is a five-parameter TS metric. As an example, we present a two-parameter met-
ric from this family, which we claim to be a new, physically realistic, asymptotically
flat, rotating vacuum solution.

In previous papers' ' we have studied the Einstein vacuum equations for stationary axially symmetric
gravitational fields. We have found that equations are presented by an infinite-dimensional symmetry
group K. The transformations of K are labeled Y» k), real and symmetric, A, B=1,2, 4 =0, +1, +2, . . . .
The Y» act upon a sequence of complex potentials N» '", A, B=1,2, m=0, 1, . . . , n=1, 2, .. .
which characterize a given space-time. The transformations may be used to generate new solutions
from old ones. However, since each of the Y» ' violates asymptotic flatness, the new solutions thus
produced are not physically interesting.

We have now found that the commuting subgroup of transformations

p(k ) (k+2) (0 )
Y22 Yl1

leaves Minkowski space invariant. Hence a space-time which is asymptotically Minkowskian is guar-
anteed to remain so under these P(~ transformations. A great wealth of new and interesting vacuum
solutions can thus be generated, and we have just begun to explore the possibilities. For example we
have found that when P(') is applied to the Schwarzschild metric, the metric generated is Kerr.

The Y»(k) transformations are given for infinitesimal values of the parameter by

k
(k).N (m, n ) N (m,n) + (k )NX (m+k, n ) + (k )N X(m, n+k) + XY(k ) ~ N (m, s)N (k -s,n)

YAB AB AB + YAX g +YH'9 A + Y ~ AL YBs1
(where indices are raised using e~J. The P(~) transformations are more conveniently expressed in
terms of P „, which are certain linear combinations of N»

I =N (o")+iN
On ll 12

p =N (m'") —iN m '")+iN m'" ')+N (m 'n ') m &0mn 11 21 12 22 P

[Note that

P„= i($ 1)-—

(2)

1608 1978 The American Physical Society



VOLUME 40, NUMBER 25 PHYSICAL REVIEW LETTERS 19JUNz 197S

where 8 is the usual Ernst potential. ] The infinitesimal version of P@~ is
0+2

p ":P0„-P0„+p "(-2iP0 „+~+1+ Q P0p PI442 p „),
s =1

0+2
(4)

s =1

The transformations may be applied to any stationary axially symmetric space-time. First we must
calculate the potentials P „ for this space-time (a laborious but straightforward process). Equation (4)
may then be iterated to give a power series in P~" . To the best of our knowledge, the series cannot
always be summed. However, in many cases of interest, the simplicity of the P „will permit us to
obtain the result in closed form.

Members of the Kerr-Tomimatsu-Sato class of solutions are particularly good candidates for the
initial metric. If the distortion parameter 6 is an integer, we have shown that there exists a gauge
in which P „=0 when m ) 5 or n ) 6. It would be difficult to work in this gauge, however, since it does
not obey Eqs. (2.18) and (2.22) of Ref. 2. (Those conditions were used in deriving the group transforma-
tions, and they could not be removed now without making extensive changes. ) Fortunately, a simple
modification of this gauge leads to one which does satisfy our conditions.

For the Schwarzschild metric, we use the potentials

P„=2i/(x+1), P„=4iy/(x+1),

2r 2s
P2„~2,-0, P2„+j. 2,+j. — Pj.j.

2r 2s
P2~+x, 2~=A„» P2„~2,+j.= Pox+A„»

where A„, are certain numerical constants, e.g. , A»= 0, A„=4i. The array P „effectively repeats it-
self, and the only independent functions it contains are Ppy Pyy.

When p~ is applied to this array, the infinite set of transformation equations all turn out to be repe-
titions of just two:

P01 P01 ~ 01 1ls Pl 1 Pl 1 ~(P11P11 P01

They may be regarded as a pair of differential equations,

BP,/ BP =P,P„, BP„/ BP = P„P„+8iP, + 16,

whose solutions are

(6)

(7)

2i b cos4P —i42 sin4P
Ppi =

a cos4P —ib sio4P+ 4 '
.
" a cos4P —ib sio4P+ 1) ' (8)

where a, b do not depend on P. From the initial conditions at P=O, we find a=x, b=y. The reparam-
etrization

p = cos4P, q = -sin4P

puts P„ in agreement with the usual Ernst potential for the Kerr metric.
When P~' is applied to the Schwarzschild potentials, the transformation equations reduce to

p, —p01+ 4p(P01P01+ 4 p(P01P01 —2i P01) s (10)

This can be shown to generate NUT (Newman-Unti-Tamburino) space. Higher k's repeat, with even k's
producing Kerr and odd k's producing NUT.

Similar results can be obtained for 5=2. For infinitesimal P we find

4ix 16 ~ (~)
(x + 1)' (x 1)'
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where

Q, = -y(5x'+ 1), Q, = 2x(3x'+ 8y'+ 1), Q, = -4y(11x'+ 2y'+ 1), g, = 8x(5x'+ 12y'+ 1) . (12)

Higher k's repeat in this case also. All P ~ 's, k -4, can be reduced to multiples of P& ), P&', P&'), P&').

The TS solution previously known corresponds to the restrictions P&') = —12P&'), P&') = P&" = 0. The
complete solution we will now be able to generate from 5= 2 will contain five arbitrary parameters in-
cluding the mass. %hen the NUT parameter is excluded, we will have a four-parameter asymptotically
flat metric, As an example, we give the solution corresponding to P&') = —4P&'), P&') = P&3) =0:

4ix(x' —1) —4Py (x' —y')
(x + 1)'(x' —1) —2i Py (x + 1)(x' —2x +y') —P'(x' —y')'

The complete 5= 2 solution plus further details will be published elsewhere. ' This work was sup-
ported by the National Science Foundation under Grant No. PHYV6-12246.
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The edge of the gap in the distribution of Yang-Lee zeros at B=iHO(T) on the imaginary
magnetic field axis in ferromagnets above Y', is essentially a critical point. In terms of
the edge exponents 6 and q, the density of zeros obeys 8 &H") - [H" —Ho(T)], with o.

=1/6=(d —2+@)/(d2 —q). Classical behavior (a=~) occurs for d&d =6. The appropriate
field-theoretic renormalization. group entails a my coupling and, with e = 6 —d —0, yields
q = —e/9 for all n & ~. This correlates well with refined series estimates for d =2 and

d=8 and with exact results for d= 1 (q= —1),

Consider the magnetization, M(H, T), of a fer-
romagnet at fixed temperature T. According to
Yang and Lee, ' the analytic behavior of M (FI, T)
as a function of the magnetic field H can be under-
stood by studying the asymptotic distribution of
the zeros of the partition function in the complex
magnetic-field plane (H', H") = (Re[H], Im[H]).
Very generally, the distribution of zeros in the
thermodynamic limit is expected to concentrate
on curvilinear loci in the complex field plane; in-
deed, for a variety of models of a ferromagnet, ' ~

including Ising models' and spherical models, it
is known rigorously that the zeros concentrate on-
ly on the imaginary axis, H =i&". In that case
the magnetization for all real and complex H can
be expressed as an integral over g(II";T), the
asymptotic density of zeros. Below the critical
temperature T„one has g(0;T) &0 and the mag-

netization as a function of real field exhibits a
first-order transition with a jump 2M, (T) o"- g.(0;
T).

On the other hand, for T &T„ there is agap of
width 2H, (T) in the distribution of zeros, and
M(FI, T) is analytic for )Im(H)~ &H, (T). The edges
of this gap, at H = + iH, (T), must be branch points
of the function M(H, T); Kortman and Griffiths'
have pointed out the interest in determining the
nature of these branch points, which we term the
Yang-I ee edge singularities. Since these are the
signularities closest to the real axis, they play a
dominant role in determining the observable be-
havior of M for realII and T. Indeed they should
enter into the asymptotic equation of state near
the critical point, although it transpires that none
of the equations proposed for d &4 in the current
literature contain the correct singularities t
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