
Voz.&ME 40 19 JUNE 1978 NUMBER 25

Differential Form of Real-Space Renormalization: Exact Results
for Two-Dimensional Ising Models
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A new real-space renormalization method is developed which leads to differential re-
normalization-group equations. For a two-dimensional triangular Ising lattice these
equations can be solved exactly and yield and exact critical properties.

The distinguishing feature of the renormaliza-
tion-group (RG) approach' to problems in statis-
tical mechanics is that it immediately focuses up-
on the critical properties of a system. These
properties appear as the solution of the RG re-
cursion relations, which in general may take ei-
ther a differential form or the form of a discrete
transformation. The RG approach contrasts
sharply with traditional methods in which critical
properties play no special role whatever. Un-
fortunately, RG recursion relations obtained by
the real-space method' can be solved only in cer-
tain special cases. Examples are some one-di-
mensional models, or models constructed espe-
cially to be amenable to RG treatment. '

The real-space renormalization method has,
until now, always led to discrete renormaliza-
tion transformations. We present here a novel
real-space renormalization procedure which
leads to a differential formulation of the RG. We
show how exact differential RG equations can be
obtained for the two-dimensional triangular Ising
model. We solve these equations exactly for the
critical properties, and find agreement with the
results obtained by Onsager' and Houtappel. '

To initiate an infinitesimal renormalization
procedure we consider the RG equation relating
the original Hamiltonian K(s) and the renormal-

ized one K'(s'),

Tr, exp[X, (s', s) +K(s)]
Tr,.exp[K (s', s)]

where XI(s', s) couples the two systems. If we

impose upon Xl the special requirement that

Tr, .exp[XI(s', s)] = exp[K(s)],

then it follows from Eq. (1) that

Tr, exp[K~(s', s)] = exp[K'(s')].

Clearly if Xl were symmetric under the inter-
change of s and s', Etl. (1) would simply be an
identity transformation and there would be no
flow in Hamiltonian space, nor any information
to be obtained from the RG. If, however, Xl fails
infinitesimally from being symmetric in s and s',
then K'(s') will differ infinitesimally from X(s)
and a flow in Hamiltonian space is generated.

We illustrate this idea for a system of Ising
spins. To construct Kz(s', s) we couple two tri-
angular-lattice systems that differ infinitesimal-
ly in number of spins. The unprimed lattice has
a lattice constant a and has the shape of an equi-
lateral triangle with side of length I.. Hence
there are L/a+ 1 lattice sites along each side.
The primed lattice is a similar array but with L/
a sites along each side (see Fig. 1). Each spin of
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one lattice is coupled to its nearest-neighbor spins on the other lattice by couplings p;(R). Both for
these couplings and for the interactions K;(R) to be introduced shortly we shall let the index i corre-
spond to an orientation in space, as shown in Fig. 1. We shall label each p, and K; by the coordinate
R corresponding to the center of the upward-pointing triangle of the unprimed lattice to which the bond
belongs. The coupling Hamiltonian Xz(s', s) is taken as a sum of terms of the form (p,s, + p,s, + p,s,)s,',
where we omit the coordinate arguments. Equation (2) relates the coupling constants p;(R) in a trian-
gle of the unprimed lattice to the interaction constants K, (R) (i,j = 1, 2, 3) in that triangle by a star-tri-
angle transformation. ' Its explicit form is

K;(R) =E(P, (R),P, (R),P~(R)), i, j,k cyclic,

&(pg, p;,p~) = —,
' In[cosh(p;+p~+p„) cosh(-p;+p, . +p~)/cosh(p; -p,. +p ) cosh(p) p,. -p )j. (4b)

Equation (3) relates the couplings p,. to interac-
tions K,. between the primed spins by a similar
star-triangle transformation, differing from Eq.
(4) only in that p„p„andp, enter with unequal
coordinate arguments. We shall make this ex-
plicit. If R is the center of the unprimed up tri-
angle in Fig. 2, then the interaction K,. of the
primed up triangle shown is constructed from
three couplings p,. (j =1,2, 3) with coordinates
differing from R by small displacement vectors
ap&, . In order to express the p&,. in explicit form
we introduce unit vectors x and y and define (see
Fig. 1)

We then have p;,.= e, + e,. -y/K3. Hence,

K,. (R —~33ay)

= E(p, (R+ap;;),p, (R+ap;.,),p, (R+.ap„)), (6)

where i, j,k are cyclic. The coordinate R —~33'
is the center of the upward triangle in the primed
lattice to which the K, refer.

We shall now consider the spatial coordinates
as continuous variables. If p;(R) varies only over
distances of order l. , then we can Taylor expand
Eq. (6) to obtain

e, = —y/$3, e, =x/2+y/213,

e, = -x/2+y/213.

K,. (R —~s3ay)

=K;(R)+a+, Q;, p» Vp, +O(a'/L'), (7)

K3
'

p . K2
1

where Q;, = aF(p, ,p, ,p~)/Bp, with i, j,k cyclic.
The gradient of p, in Eq. (7) is easily related to
the gradient of K by Vp, =Q Q ', VK„,where
Q"', 'is an element of the inverse matrix. In or-
der to derive from Eq. (7) a renormalization
transformation we rescale&he coordinates of the
K; in such a way that their range becomes the

R

K2',
K1

FIG. 1. The couplings p; connect the sites of the un-

primed triangular lattice (circles) to those of the
primed lattice (crosses). Inset: The correspondence
between the index i and the orientations of the couplings

p; and interactions K;.

FIG. 2. The bonds p; (solid lines) involved in the
calculations of the interactions E; (dashed lines). Also
shown is a reference triangle of the unprimed lattice
(dotted lines), centered at H.
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same as that of the coordinates of the K,-. That
is, we put R'—= [(L+a)/L](R —g3ay) and define
renormalized couplings K, ' by K, '(R') =K, (R
—3W3ay). We use these definitions in Eq. (7) and
expand K, '(R') about R. Putting r= R/L, BK,
=K, '(R) —K, (R), and Bt = a/L, we obtain for a/L
—0 the renormalization equations

BK)/Bt =+~ D)) ~ VK~ —r VK), i = 1,2, 3, (8)

where V' now differentiates with respect to r, and
D~~=-g»(e, + e»)Q, » Q '» T. he equations have to

be solved in an equilateral triangle with side of
length one and center in the origin, for given ini-
tial condition at t = 0, and subject to the appro-
priate boundary conditions. To see what the
boundary conditions are, we note that the renor-
malized interaction between two spins on the bor-
der of the primed lattice arises from a star-tri-
angle transformation in which one of the couplings

p, has vanished. Hence in order that the renor-
malized couplings along the sides of the lattice
be given by the same expression (8), we have to
impose that p, =0, p, =O, and p, =O, along the low-
er, the right, and the left borders of the triangu-
lar domain, respectively.

In this Letter we limit ourselves to the study of
the critical properties of Eq. (8). The flow gen-
erated by Eq. (8) has an important invariance
property, which is most easily described with
the aid of the functions u,. = sinh2K, .sinh2K„(i,j,k
cyclic). One can verify that the subspace of func-
tions K, (r) that satisfy locally (i e fox. e.very r)
the "criticality condition" Q&u&(r) = 1 is left in
variant by the flora. We note that the relation
P;u; = 1 is precisely Houtappel's condition' for
the critical surface in K,K+, space of a homo-
geneous triangular lattice. If we introduce the
normal vector $,.= Bg,u, /BK, , then the invari-
ance property can be stated as g, P, (r)BK&(r)/B.t
= 0 whenever K&(r) lies in the critical subspace.
This result is most easily verified by using Eq.
(8) and expressing functions of the K;(r) in terms
of the p, (r).

Within the invariant subspace one can locate a
critical fixed-point solution K,*(r), defined by
BK,*/Bt=0. In terms of theu, we find

u, *(r)= 3 —2r e, , i = 1,2, 3,

which satisfies the boundary conditions and has
triangular symmetry. While the lattice described
by K, is isotropic triangular in the center, it
deforms continuously and is square near the ver-
tices, and one-dimensional with infinitely strong
couplings along the sides.

Finally by putting K;(r) =K,"(r) +g&(r) and lin-
earizing Eq. (8) about K;*(r), we obtain a linear
flow problem of the form Bg, (r)/Bt =g,-&„-*(r,
V)g,.(r). In this approach the critical exponents
are identical to the eigenvalues of the operator
T*. We expect the fixed-point solution to be sta-
ble within the critical subspace, but unstable in
directions away from it. The analysis of the ei-
genvalues in the unstable (temperaturelike) direc-
tions is facilitated by our knowledge of the invar-
iant subspace. It follows that the adjoint opera-
tor T* has temperaturelike eigenfunctions of the
form y&(r) = f (r)f&*(r), where $&* is the normal
vector evaluated at K,-*. Upon substitution, a
scalar eigenfunction equation for f results. Af-
ter considerable algebra, again facilitated by
working with the functions p, (r), this equation
simplifies to

f (r) =yf (r) (10)
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Hence there is an eigenvalue y = 1, in accordance
with the exact result. ' It is infinitely degener-
ate and any f (r) is an eigenfunction. In fact Eq.
(10) is a demonstration of universality, since the
fixed-point solution (9) contains locally different
critical systems which by (10) all have the ex-
ponent y = 1.

In conclusion we have derived an exact real-
space RG recursion in differential form for the
two-dimensional triangular Ising model with three
different spatially dependent nearest-neighbor in-
teractions K, (r). We have solved these equations
without approximation for the critical properties,
and found exact results for both the critical tem-
peratures and the temperaturelike critical singu-
larities. Further details will be published else-
where.
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For stationary axially symmetric vacuum metrics, we give a series of transformations
P(k) which automatically preserve asymptotic flatness. We show how to generate the Kerr
metric from the Schwarzschild, using P(). We also show, using P, that the Tomima-
tsu-Sata (TS) class of metrices must be larger than previously realized, and for 5 =2
there is a five-parameter TS metric. As an example, we present a two-parameter met-
ric from this family, which we claim to be a new, physically realistic, asymptotically
flat, rotating vacuum solution.

In previous papers' ' we have studied the Einstein vacuum equations for stationary axially symmetric
gravitational fields. We have found that equations are presented by an infinite-dimensional symmetry
group K. The transformations of K are labeled Y» k), real and symmetric, A, B=1,2, 4 =0, +1, +2, . . . .
The Y» act upon a sequence of complex potentials N» '", A, B=1,2, m=0, 1, . . . , n=1, 2, .. .
which characterize a given space-time. The transformations may be used to generate new solutions
from old ones. However, since each of the Y» ' violates asymptotic flatness, the new solutions thus
produced are not physically interesting.

We have now found that the commuting subgroup of transformations

p(k ) (k+2) (0 )
Y22 Yl1

leaves Minkowski space invariant. Hence a space-time which is asymptotically Minkowskian is guar-
anteed to remain so under these P(~ transformations. A great wealth of new and interesting vacuum
solutions can thus be generated, and we have just begun to explore the possibilities. For example we
have found that when P(') is applied to the Schwarzschild metric, the metric generated is Kerr.

The Y»(k) transformations are given for infinitesimal values of the parameter by

k
(k).N (m, n ) N (m,n) + (k )NX (m+k, n ) + (k )N X(m, n+k) + XY(k ) ~ N (m, s)N (k -s,n)

YAB AB AB + YAX g +YH'9 A + Y ~ AL YBs1
(where indices are raised using e~J. The P(~) transformations are more conveniently expressed in
terms of P „,which are certain linear combinations of N»

I =N (o")+iN
On ll 12

p =N (m'") —iN m '")+iN m'" ')+N (m 'n ') m &0mn 11 21 12 22 P

[Note that

P„=i($ 1)-—

(2)
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