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The diffraction model is generalized to incorporate a postulate on the electron-phonon
interaction; viz. , phonons with wavelength exceeding the electron mean free path are in-
effective electron scatterers. This postulate leads to a limiting resistivity when the elec-
tron mean free path is of the order of the interatomic spacing. The generalized diffrac-
tion model is also shown to explain many anomalous features common to high-resistivity
metals. Crsytalline Nb, A15's, and glassy metals are discussed.

High-resistivity amorphous and disordered- -AT at low temperatures rather than the pre-
crystalline metals exhibit many anomalous trans- dieted positive T dependence and concommitant
port properties. The variety of explanations for small maximum"). (3) Saturation" (many inter-
these anomalies reflects the complexity of high- metallic compounds, e.g. , the A15 alloys, "ex-
resistivity systems. Examples of mechanisms hibit a loss of temperature dependence of p at
invoked to explain the behavior of these systems high temperatures. Saturation has also been sug-
include virtual-bound-state formation, ' break- gested to occur in pure Nb. '"). We shall show

down of the Boltzmann equation, ' electron local- that these anomalies can be explained in the
ization, ' s-d scattering, ' vacancy formation, ' mul- framework of the diffraction model if we invoke
tiple-scattering effects, ' and thermal excitation a plausible postulate concerning the electron-
of nearly degenerate core configurations. ' phonon interaction as follows:

Many of these anomalies can be understood Interaction postulate. Phonons gei—th uavelength
within the framework of the diffraction model, exceeding the electron mean free path A are in-
i.e. , Ziman theory' and its extensions. '" We effective electron scatters. " The effect of the
have shown" "that this model explains the +T' interaction postulate is to produce a low-wave-
low-temperature dependence of the resistivity p, vector (or low-frequency) cutoff in the integrals
the variations of the temperature coefficient of over the phonon spectrum which occur jn the dif-
resistivity (TCR), and the small resistivity max- fraction model. In the following we shall consid-
ima seen in alloys at concentrations for which er a Debye spectrum so that the electron-phonon
the crossover from positive to negative TCR oc- interaction will be turned off completely for A

curs. =2m/qD, where qD is the Debye wave vector. The
However, a number of anomalies have not been resistivity corresponding to A =2m/qD is approx-

explained by the diffraction model, including the imately 200 pQ cm for a monovalent free-elec-
following: (1) Breakdown of Matthiessen's rule tron metal.
in high-resistivity metals (the occurrence of The temperature dependence of p is essentially
small or negative TCR for all high-resistivity determined by that of the resistivity structure
metals" ). (2) Low-temperature anomaly (very- factor S~(K).""Thus, consider the one-phonon
high-resistance amorphous alloys exhibit p cc 1

~

resistivity structure factor neglecting the inter-
action postulate

g s 2w(K)

S,'(K) =— +[a(K + q) +a (K —q)]n(x) [n(x ) + 1],
B q

where h is Planck's constant, k& is Boltzmann's constant, K is the scattering vector, e '~~+ js the
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Debye-Wailer factor, M is the ion mass;

a(K)=-N 'Q exp[iK (m —n)]

is the (geometrical) structure factor, n(x) = (e"—1) ', x =hcu/k~T, ru is the phonon frequency, m and n

are average ion positions, N is the number of ions, and the summation runs over the q values in the
spectrum. Taking the interaction postulate into account we find the summation of q is restricted such
that only wave vectors whose magnitude lies between 2p/A and qD are included. We thus define a gen-
eralized one-phonon resistivity structure factor S, (K, A) and, in analogy with the treatment of Refs.
11 and 20, a generalized average structure factor for resistivity A~(K, A) for amorphous metals as
follows:

S,~(K, A) -=o (K)(9/T) f (q/qD)'d(q/qD)n(x)[n(x)+ 1] fdQa(K+q)/4m,

n(K-)(8/T)A'(K, A)j (q/qD)'d(q/qn)n(x)[n(x)+ 1],

(2)

p=—(1 y)p;, +-p. e

where y-=2m/AqD, a(K) = 3e '~ (kK)'/Mk~9, and

8 is the Debye temperature. For T ~ 29 we ob- line and amorphous metals,
tain to a good approximation

(6)
r 1

q ~dQ
S,p (K, A ) = n (K)— d —

~

a (K+ q)
e& g QD + 477

(2')

= ~ (K)(T/9)A'(K, A). (3')

The most important scattering vectors in the
resistivity of glassy and liquid metals generally
satisfy K &k ~."" For such scattering vector s
and T~ 28~

"dO
A&(K, A) =, d —

l a(K+q)
'y qD l 4m

- (1-y)A'(K), (4)

xS"(K)=--,'~(K) —P ~, T &-,'8,
O~ q

(5)

where G runs over the subset of reciprocal-lat-
tice vectors satisfying 0 &q &qD and q =

l K - Gl .
The interaction postulate in this case restricts
the sum to that subset of reciprocal-lattice vec-
tors which satisfy 2m/A &q &qD. A fraction, y'
= (2v/AqD)', of the phonon states whose contribu-
tion to S~ goes like q"' is eliminated from the
summation in Eq. (5). We are therefore led to
the same conclusion as in the amorphous case;
vis. , the phonon part of p is approximately re-
duced by the factor (1 —y), and for both crystal-

where A~(K)=A (K, ~) is the averaged structure
factor defined in Refs. 11 and 20.

In the crystalline case, where a(K) is a 6-func-
tion sum, we apply the well-known idea (Baym's
theorem", ) that, for T ~M, S~(K)=S"(K), where
S"(K) is the x-ray structure factor. The x-ray
expression" for one-phonon thermal diffuse scat-
tering ls

where p; is the ideal one-phonon resistivity (A- ~), and the elastic component is given by p, e '
with 28'* an averaged Debye-Wailer exponent.
We have neglected multiphonon terms, which
should drop off faster than p,- .

Since p ~1/A, p will be proportional to y. We
define the proportionality constant as the satura-
tion resistivity p*. Thus,

p = 3/N(EF)e Av„

=y3qD/2+N(EF)e vF —= y'p*,

(7)

(6)

p/p* = (p;, /p*+ p, e "/p, ) (p,,*/p*+ 1) '

=(T*+P.e "*/P*)(T*+1) ', (9)

where the dimensionless normalized temperature
T* is defined in Eqs. (9) and (10). In particular,
p; ~PT for T ~ 20 with P constant, so that

T*=pl p* = -(P/p*)T (10)

Figure 1 shows graphs of normalized resistivity

where N(EF) is the density of states at the Fermi
energy, e the electron charge, and vF the Fermi
velocity. For a monovalent free-electron metal
p* =200 pO cm. However, Nagel and Tauc" sug-
gest that in amorphous metals the peak in a(K)
produces a reduction in N(Ev) below the free-elec-
tron value, so that in amorphous (and liquid) met-
als p* may be significantly larger than 200 p.O

cm. The appropriate density of states of conduc-
tion electrons in transition metals may be consid-
erably smaller than the free-electron value which
would also yield larger values for p*.

Equations (6) and (8) yield
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p/p* vs T* for a variety of conditions and is in-
tended to indicate the general features of Eq. (9).
The anomalies previously enumerated can be un-
derstood in the framework of Eqs. (9) and Fig. 1:

(1) Breakdown of Matthiessen's rule in high-re-
sistivity metals (large p,/p*)": The averaged
Debye-Wailer factor plays an important role in
determining the temperature dependence of the
resistivity when the elastic scattering is large.
The dashed curve in Fig. 1 shows p" /p vs T* for
pp p* and the other par ameters chosen to repre-
sent a typical transition metal. [W* was set equal
to W(2kF). ] The negative TCR at all T* is appar-
ent. Since y increases as p, increases, which im-
plies that the positive-TCR inelastic term (1
-y)p;z in Eq. (6) decreases, one will see small
or negative TCR whenever po is large enough.
For a typical transition metal this occurs when

p is of the order of &p*.
(2) I ow-temperature anomalous temperature

dependence of resistivity in high-resistivity met-
als, " i.e. , p cc 1-AT'. Essentially the argument
given to explain the breakdown of Matthessen's
rule covers this anomaly also. At low tempera. -
tures p; and W* are proportional to T' for per-

lP

feet crystalline metals and T' for amorphous al-
loys. So for small-p, (small-y) cases, satura-
tion effects are negligible and the normal +T'
and T' variations of p are given. However, if p,
is large enough (y large enough), then the elastic
scattering term is dominant and p cx 1-AT'. (In
the extreme case, y=1, pc. e '~ ~1-2W*.) For

I I I I I I I I I I I I I I I I I I I

a typical transition metal the transition from pos-
itive to negative TCR's should occur for p, great-
er than about 2p*.

(3) Saturation": Saturation appears to be a uni-
versal feature of high-resistivity metals whether
phonon scattering or elastic (structure) scatter-
ing is dominant. ' That is, the resistivity of all
metals becomes essentially temperature indepen-
dent at high resistivities. The solid curves in
Fig. 1 show p/p* vs T* for a variety of values of

p, with 8'* set equal to zero. The effect of the
Debye-Wailer factor is displayed in the dashed
curve in Fig. 1. The increase of S'* effectively
lowers p, as T* increases.

(a) Resistivity of Nb, Sb and Nb, Sn": Good agree-
ment with the measured temperature dependence
of the resistivity of crystalline Nb, Sb and Nb, Sn
may be obtained using P = 0.33 pO cm!K and p*
=200 pQ cm.

(b) Resistivity of Nb": The temperature depen-
dence of the resistivity of Nb has been the sub-
ject of controversy in the recent literature. "'"
The deviations from linearity in the high-temper-
ature resistivity of Nb as shown in Fig. 2 are
seen to be in excellent agreement with our theo-
retical result for P = 0.047 pQ cm/K and p* = 200
pQ cm. Thus, our results support Allen's con-
jecture that the deviations from linearity in Nb

are saturation effects and that proposed alterna-
tive mechanisms, such as band-structure effects'4
and Debye-Wailer damping of the phonon resis-
tivity" yield small corrections at best.

Finally, consider the elastic-scattering term
in high-resistivity metals which has been treated
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FIG. 1. Normalized resistivity p/p* as a function of
generalized temperature T*=p; /p~. The solid curves
are plotted for a variety of values of normalized resi-
dual resistivity po/p+ (shown on each curve) with the
Debye-%aller factor set equal to unity. The dashed
curve is plotted for values chosen to represent a typi-
cal transition-metal system with large residual resis-
tivity, i.e., po/p+=1, 0=800 K, P=0.18 pQ cm/K,
2&F =3.0 A ', and M =90 amu.

400 800 1200 1600 2000 2200
T (K)

FIG. 2. Deviation from linearity in the resistivity of
Nb as a function of temperature. The data are from
Hef. j.8. The factor 1.06 normalizes the theoretical re-
sult to unity at room temperature. (The ordinate for
the experimental data is p/p& where p& is a linear ex-
trapolation of the room-temperature resistivity. )
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as independent of A up to this point. We expect
that a maximum elastic resistivity also occurs
corresponding to A of the order of interatomic
distances. " This effect could be considered in
an analogous manner to the inelastic scattering
by assuming that periodicities in the radial dis-
tribution functions of characteristic spacings
which are greater than A in amorphous metals
are ineffective in scattering electrons, leading
to a cutoff in the low-momentum-transfer contri-
butions to p. In transition metals, backscatter-
ing is dominant' so that the diffraction model is
expected to remain reliable beyond the point
where strong saturation effects appear in the in-
elastic component.

The uncertainty-principle blurring of the Fermi
surface is an additional effect which can contrib-
ute to saturation. " In most of the systems under
consideration, it is not expected to play an im-
portant role for phonon scattering. "
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