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A mean-field theory for the ordering of hydrogen molecules on a triangular net is de-
rived in terms of the quadrupole coupling constant I", the crystal field V, , and the tem-
perature T. The phase diagram consists of six regions, separated by first- and second-
order transitions. For almost all values of V,/I' for which ordering occurs, the disor-
dered to ordered phase transition is continuous. At T = 0 K, all phases have energy gaps
except for a ferrorotational phase which behaves like an XF model.

In this Letter we present the results of an anal-
ysis, based on mean-field theory, for the phase
diagram of (J= 1) hydrogen molecules (ortho-H,
or para-D, ) on a two-dimensional triangular lat-
tice. In the model which we treat, the centers of
mass of the molecules are fixed at their lattice
sites whereas the orientations of the molecules,
specified by their occupation of three m~ levels
within the J= 1 manifold, are determined by the
electrostatic quadrupole-quadrupole (EQQ) in-
teraction between molecules and the crystal field
of the substrate. This model describes mono-
layers of ortho-H, or para-D, on graphite (or
Grafoil) in the phases where the centers of mass
of the molecules are in registry with the sub-
strate. ' Our conclusions form the basis for bet-

ter treatments of the cooperative orientational
ordering and, as will be seen, give rise to a rich
variety of phases. Among these is a phase having
the same symmetry as the widely studied two-
dimensional Heisenberg model for planar spins,
the XY model. '

It is well established that in the solid the EQQ
interaction is dominant. ' On Grafoil one expects
an additional orientation-dependent interaction
due to the field of the substrate. This crystal
field will have the form

H, = V,Q, [Jg(i)' ——;],

where i is summed over all hydrogen molecules,
X(i) is the angular momentum of molecule i, and
the z axis is chosen perpendicular to the sub-
strate. The EQQ interaction has the form

HEoo=(16@I'/45)v'70n P g C(224; M, N)N, "(i )&,s(j ) F,"'"(0,.&),
is) Nsk

(2)

where I' is the nearest-neighbor EQQ coupling
constant, ' C(224; iM, N) is a Clebsch-Gordan co-
efficient, ' I;"(&,, ) is a spherical harmonic, ' and

0,.&
specifies the direction of the vector joining

molecules i and j which are nearest neighbors.
The operators s,"are given by s,'=(5/16m)+'(3J, '
—2), s,"=+(15/32m)~'(J, J,+ J,J,), and s',"
= (15/32m)'t' J,'.

In the disordered or pararotational ("para")
phase, the molecules mainly feel the crystal field
which tends to align them parallel (for V, &0) or
perpendicular (for V, &0) to z. As this order
builds up, the alignment is opposed by the EQQ
interaction which classically would cause a pair
of molecules to orient perpendicular to each other
in a "T"configuration. Thus in mean-field theory
for the para phase, there is an effective tempera-
ture-dependent gap between the m ~ = 0 and m ~ = + 1

~ states

~(T) = V, -'-,'a, r,

o, =(1--,' J,'),

(3a)

(3b)

F= Tr (pH+ k Tp lnp], (4)

where ( ~ ) is a thermal average over I~=0,+ 1.
Clear evidence for a temperature-dependent gap
has been obtained from recent measurements of
the NMR spectrum of (J=1) D, on Grafoil by Kub-
ik and Hardy, ' who first attributed it to the EQQ
mechanism described above and whose observa-
tions led us to consider the problem of the possi-
ble low-temperature ordered states.

To investigate these ordered phases we calcu-
late the free energy
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p, = —p,.'/v 2 (1+ 2o,)/3.

'/2 . p, '/V 2

(5)

in the m~ representation. We will also use the
notation v„+iv, =—v', where v = p, or g, and v„and
v„are real. In terms of these order parameters,
((E,o)) = —(5/4n')~'o, ((E,"))= +(15/32m)'~'p', and

(( v',"))= —(15/32m)' 'g' where ((~ ~ ~ )) = Tr(p ~ ~ ~ ).
Three equivalent techniques were used to ex-

plore the mean-field phase diagram. These are
(1) the Landau expansion, ' (2) a self-consistent-
field method of the type developed by James' for

where the density matrix p is chosen to minimize
I subject to the condition Trp=1. Within mean-
field theory p is restricted to be a product of sin-
gle-particle density matrices, p, We work in a
coordinate system in which the z axis is normal
to the layer and the x axis connects the molecule
at the origin to one of its nearest neighbors. In
the absence of magnetic interactions the most
general form for p,. is

(1 —v,.)/3 —p,. /W2

solid hydrogen, and (3) analytic formulas. The
Landau expansion, in terms of the parameters q, ,
p, „and (o; —v,), where o, is the average of g,.
over all molecules, was only useful close to the
disordered phase where these parameters are
small. This method is quite powerful, however,
since it does not necessitate the assumption of a
particular sublattice structure. The self-consis-
tent-field method requires a computer calculation
for an NXN array of molecules with periodic
boundary conditions. This method is useful for
locating first-order transitions. Analytic formu-
las were obtained for the free energies of each of
the phases which were studied. These formulas
allowed us to check the accuracy of the computer
calculations and provided alternative derivations
of the Landau expansions.

Our results are summarized in the phase dia-
gram in Fig. 1, in which the coordinate axes are
the dimensionless variables V, /I'—= V, and T/I'

Five different ordered regions are seen to
occur. For large negative crystal fields at low
temperature, the stable structure is the two-sub-
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FIG, 1. Phase diagram for hydrogen moleoules on a
triangular lattice. U~ is the crystal field, T is the tem-
perature, and I' is the EQQ coupling constant. The
various orientational phases, 2-in, 2-out, 4, ferro,
and para, are described in the text. Dashed (solid)
lines represent first- {second-) order transitions.

FIG. 2. Possible ordered structures for hydrogen
molecules on a triangular net. (a) The projection onto
the xy plane of the two-sublattice structure. When the
molecular wave functions lie in the plane, y is 45'.
For the "2-out" phases, y is a function of V~. (b) The
four-sublattice structure. The average orientation of
molecules on sublattice 1 is along z. Molecules on
sublattices 2, 3, and 4 are equivalent to each other
and lie in the xy plane.
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eos2y, = (o, —o, )/7q, . (5)

Close to the pararotational phase 0, —0, goes to
zero like gp', and hence g, goes to 45 at this
boundary.

For V, & 5.07 at 7 = 0 the 2-out phase reappears.
A

As V, increases, this phase evolves continuously
into a one-sublattiee ferrorotational ("ferro")
phase. [For ~=0 the angle y in Fig. 2(a) goes
continuously to zero at 0,= 19.] The ferro phase
is characterized by p=(p, cosy, p, sing), g=(g,
&& cos2y, q, sin2y) with g arbitrary and o&0. For
V, &-,' there is no cooperative ordering. The only
nonzero order parameter is op whose tempera-
ture dependence is determined by Eqs. (3).

Using the Landau expansion, the phase transi-
tion from the para phase, if it is second order, '
is signaled by the occurrence of a zero eigenval-
ue of the matrix O'E/Bq, ~8q&8 where i and j label
molecules and q,.„(a=1, . . . , 5) is one of the five
fluctuating order parameters p,.„, p,„q,.„,q,.„,
or (o,. —o,). The matrix is reduced to block diago-
nal form by a spatial Fourier transform. For
10.43( V, &'-,', the eigenvalue which goes soft at
the highest temperature is a Q =0 mode for which
the associated eigenvector is an arbitrary lin-
ear combination of p„and p, corresponding to
p = ( p, cosy, p, sing) which describes the ferro

phase. Within mean-field theory the degeneracy
with respect to g persists to all orders in the
Landau expansion since the entropy is indepen-
dent of g. Near the order-disorder transition Qp

is proportional to p, '.
For V, (10.43 the eigenvectors which first have

lattice phase shown in Fig. 2(a) with q =45'. In
this phase the molecular wave functions are in
the plane of the substrate (p =0), and hence it is
labelled "2-in". A similar structure has been
proposed by Fuselier, Gillis, and Raich' for N,
on Grafoil.

Just above the 2-in phase there is a small re-
gion labeled "2-out" in which the molecules begin
to tip up out of the plane ( ~ p ) & 0). As the crystal
field is increased (at V, = —2.80 for ~=0) there is
a first-order transition from the 2-out phase to
a four-sublattice phase (labeled "4")." The struc-
ture of this phase is illustrated in Fig. 2(b). It is
characterized by p =0 for all sublattices, g =0
for sublattice 1, and v, -o, =o, =04. H we write
g,. =(q, eos2y, , q,sin2y, .) for i= 2, 3, 4, then g, = y,
+60, y, + 120' and

a zero eigenvalue as 7 is lowered are

X„=g,. q, , exp(iQ„r,.), (7a)

X~= -,'Q,.[&3r),„-g,„]exp(iQ~ r,.), (7b)

Xe = —,'P,.[- W3q,„-q,, ] exp(iQe r), (7c)

where Q&
——(2w/a&3)j, Qz ———(n'/a)i —(m/aV3)j, Qe

= -Q„-Q~, and a is the lattice constant. As Lan-
dau pointed out, ' one must look at higher-order
terms to decide what phase actually occurs.

There are no terms in the free energy which
are of odd order in the X's. At the temperature
at which the zero eigenvalues first develop, the
fourth-order term in the free energy has the
form

E~ l=e(X~'+X~'+Xe')'

+ p(x„'x,'+ x„'x,'+ x,'x,'), (8)
cA

with a &0. For V, &2.34, P is positive and the or-
dered state is one in which only one of X~, X~,
or Xc is nonzero. This is the two-sublattice
structure 2-in. For 2.34& V, &9.82, P is negative
but o. + P/3 is positive. Then the ordered state is
one in which X„'=X~'+Xc' which corresponds to
the four-sublattice state with g, =45'. [Cf. the
discussion below Eq. (6).] As long as Eel is posi-
tive, the transition temperature ~, is simply de-
termined by the vanishing of the smallest eigen-
value and the transition is continuous. We find
that

r, = 73(1 —o'0)/12,

where a, is determined by Eq. (3).
At V, r=9.82, 7 +=3.50, n+ p/3 (and hence F 4

)
passes through zero. For V, & V, the transition
from the para to the four-sublattice phase is first
torder The p. oint (V, , ~z) is a tricritical point,
and the critical exponent for the appearance of
the order parameter qp at this point is & instead
of & which is its value elsewhere on the second-
order line given by Eq. (9). The details of the
phase boundaries near the tricritcal point (in par-
ticular for 9.82 & V, &10.43) are not represented
in Fig. 1.

What is the outlook for this problem'P Experi-
ments on hydrogen on Grafoil will continue and it
will be interesting to see whether V, can be var-
ied in order to map out the phase diagram. At
present, NMR experiments' seem to show that
for D, on Grafoil

~ V, ( =4, but that there is no
phase transition for 7 R 2. This suggests that a
more complete and realistic treatment of this
problem, not based on mean-field theory, is es-
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sential. "
A fuller report of this work is being submitted
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Strong anomalies in the velocity and attenuation of longitudinal ultrasound in the mega-
hertz range were observed for the first time in the vicinity of the nematic-smectic-A
phase transition in a liquid crystal (terephthal-his-p-p'-butylaniline). Results are in
strong contradiction with theoretical predictions and are qualitatively consistent with a
picture involvirg both critical fluctuations and relaxation of the smectic order parameter,
similar to that observed near the A transition in liquid helium.

In recent years the nematic-smectic-A phase
transition in liquid crystals has undergone ex-
tensive studies, both theoretical and experimen-
tal. The possibility of a second-order transition
(either mean-field-like' or A. -like') was predicted
theoretically. Experimental evidence, though
somewhat contradictory in nature, has been ob-
tained on the pretransitional behavior of the

Frank elastic constants, twist viscosity, etc. ,
in N-p -cyanobenzylidene-p -octyloxyaniline (here-
after referred to as CBOOA) which is known to
have an almost second-order nematic- smectic-A
phase transition. ' Sound propagation in CBOOA
in the megahertz range of frequency, however,
did not exhibit any anomaly near the transition. '
Experiments performed at lower frequencies'
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