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In the approximation in which the nuclei are fixed in space, the electric current density
induced in a molecule or solid by a uniform external magnetic field 8 is shown to have
the form J=Vxk where, to firstorder in 8, k=(e 8/2mc)ng, (P). There is one function

g; for each electron. These functions are independent of the gauge of the vector potential,
and they are determined by the zero-field configuration-space probability density.

Turning on a uniform magnetic field B produces
a nonconservative electric field perpendicular to
B. Electrons moving relative to fixed nuclei and
experiencing this field would be expected to ac-
quire an induced current which is also perpen-
dicular to B. A stationary state of this system
of electrons would then be characterized by an
electric current density satisfying j B =0 as well
as V ~ j =0. In this Letter this conjecture is
shown to hold when j is computed to first order
in B.

The calculation of magnetic susceptibilities and
chemical shielding constants has been of interest
for some time. ' ' These quantities are usually
calculated from perturbation theory as a sum of
two terms, one from first order which involves
an unperturbed eigenfunction and the other from
second order which involves the first-order
change in the corresponding eigenfunction. Al-
though each of these terms is separately gauge
dependent, their sum is not, provided that an
exact first-order eigenfunction is used. In prac-
tice, therefore, actual calculations of magnetic
properties have been gauge dependent. ' "0'" An
alternative approach is to evaluate the induced
current density to first order in 8 and from it
calculate the magnetic property of iriterest. Qf
course, this approach also requires the solution
of the first-order perturbation equation. How-

ever, by exploiting the pxoperties j ~ B=0 and V ~ ~j

=0, I have found that this problem can be cast in
a different form. A new and gauge-invariant
equation is found whose solution determines j .
By use of this formulation, magnetic properties
can now be calculated in a gauge-invariant man-
ner.

The Hamiltonian of N electrons moving about
fixed nuclei in a uniform magnetic field B can be
written in the general form

eA,.p. y ' +V(r„r„... , rs),. , 2m ' c

where -e is the charge on an electron of mass
rn. The vector potential A& =A(r;) satisfies Vi
&& A~ =B and I leave ~; ~ A~ unspecified. Spin-de-
pendent terms have not been included in H since
the coupling between the total spin S and the field
shifts the energy but does not affect the calcula-
tion of the induced current density. Furthermore,
the induced current density is important when the
expectation value of S is zero so that the spin cur-
rent density' is also zero.

The general equation for conservation of proba-
bility density in configuration space is

BP/&t+ Qvi ' Ji =0, (&)

where P= 14'12, JPd'r, d'r, ~ .d'r„= JP(d'"r) = 1,
and

J; = Re(+*v,+),
with v; = (pi +eAl/c)/nz. Only stationary states
are considered here so that BP/&t = 0 and g, vi
~ J; =0. The electric current density is then"

j (T') =Q, J ( eJ~)6-(r T~)(d'"r)-.

Eigenfunctions of H including spin should satis-
fy the exclusion principle and be eigenfunctions
of both the square of the total spin angular mo-
mentum and its component along B. The form
taken by such an eigenfunction is'4

~s, ~ = (&s) "'2 (s'es, e, i

where P, =P, (r„r„.. . , r„) and its associated
spin function 8 &,&, &

are basis functions of a par-
ticular irreducible representation of the symmet-
ric group which are characterized by the spin
quantum numbers S and M, the number of elec-
trons, and the orthogonality relation

&es,z, t~es, z, a& =~ra

It follows that

(6)
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where ~& is the dimension of the irreducible rep-
resentation for spin S. The expectation values
of the permutation-invariant operators for cur-
rent density and electron charge density then re-
duce to expressions requiring any one of the spa-
tial eigenfunctions g& . For example, the elec-
tron charge density is (Ho —Eo) 4', +H, 40 = E,4'0, (7)

where P =
~ g, ~', JP(d'"r) = 1, and (cP" 'r),

=d'y, ~ ~ d'v, ,d'~, , ~ - d'vN. Similarly, in Eq.
(2) we should use one of the g,

~ to calculate j(r).
To calculate j to first order we must solve the

first-order perturbation equation

where H, 4, = E,4„

H, = -P, (h '/2m) V,.'+ P,

H, = —g, (ieh/mc)A, V, -g„(ieh /2mc)(V„A, ).

and

Appropriate zero-field eigenfunctions are (4, ) ~,. The external field does not split the permutation
degeneracy described by Eq. (6), and so only one of these functions is required. Hence 4', =(4', ~)s,.
I assume that there is no other degeneracy so that 40 is a real function. The first-order energy then
vanishes, i.e., F., = (C, ~H, ~4,)=0." If we write O', =E@„Eq.(7) becomes [H„E]4',+H,4, =0. On

evaluating the commutator and introducing the normalized zero-field configuration-space probability
density

@ 2 fP (d3Er)

the first-order equation reduces to

g„(R/m) [V,'F + V,E ~ V,(lnPD) + (ie/Rc) A, ~ V, (lnP0) + (ie/hc) V, A,) ]= 0..
This equation is solved in terms of a set of auxiliary functions f, , one for each particle, by writing

V, F= (-ie/2hc)[2A, . + V,f, xB+f,V, (lnP. ,) xB]. (9)

Calculating V,'I' we find"

V, 'E=(-ie /2')[2V. , .A, + V, f, ~ V, (lnP, ).xB]. (io)

Substituting Eqs. (9) and (10) into Eq. (8) and using cyclic permutations like axb c =cxa b we find it to
to be identically satisfied. The functions f& are then determined by the requirement that V,E is indeed
the gradient of a scalar function, i.e., that

v, xv, I =0, g=1, 2, . . . , ¹

Since V',. &A, =B, these conditions take the general form

2B + V,. x (V, f, xB) + V, x [f,V, (lnPO) x B]= 0.

I will subsequently show that Eq. (11) and its associated boundary conditions determine the f, uniquely.
Since Eq. (11) involves only V, xA, =B and not A, itself, the solution f,. are independent of the gauge of
the vector potential. This is in contrast to the function E in Eq. (9) which depends on the gauge. "

The probability current density in first order is evaluated from Eq. (2) as

—eJ,= (iek/2m)(%*V, @—4V, 0*)—(e2/mc)A,
~

4~2

=(iek/m)P V, E —(e'/mc)A, P, . . (i2)

Using V&E from Eq. (9) we find"

eJ, =(e'/2m-c) V., x(Pof, BQ.

It is clear that Q, V, ~ J, =O as required. The electric current density obtained from Eqs. (3) and (13)
is then

j(r) = V xk(r), (i4)
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where

(16)

k(r) = (e'B/2mc) g g, (r), g,(r) = J (P,f, )",, =, (d'" 'x) „j =1

The current density j(r) explicitly satisfies V j =0 and j ~ B =0. Since the f, are independent of the
gauge of the vector potential, so are the g, and the current density itself. This development can be
considered as an independent proof of this well known fact ".From Eq. (14) and Stokes's theorem we
obtain a useful relation for the electric current I flowing through any closed curve as

I= fk d l=(e'/2mc)g Pg, (B d~).

The boundary conditions on the f, are determined by their relation to l. Since the electric current den-
sity must be a finite, continuous, and single-valued function then J(P,f,)(d'" .'r), and f. V, (P,f&)(.d'" 'z),
must be finite, continuous, and single-valued functions of (x, ,y, ,z,.) for all j. Furthermore, i(r) must
vanish as r-~ so that, for all j,

f (P,f,)(& 'r); and f'V, (P,f,)(d. 'r. ), -0 as .r,
For a field in ther direction, B=Be„Eq. (11)becomes

(B'f, /Bx, '+.B'f, /By, ') + (Bf./Bx, )B(lnP )/.Bx, + (Bf, /By, )B(lnP, )/By, + f,(B'/Bx, '+. 8'/By, ')InP, = 2.

If we define the transverse gradient V„.= (B/Bx,.)e„+(B/By,.)e„Eq. (18a) is given by

V„'f,+V„.f~ V,)(.lnP, ) +f, V„'(lnP, .) = .2.

The function F is determined from Eq. (9) as

(17)

(18a)

(18b)

(i9)

E, exhibits a different magnetic response for dif-
ferent relative values of a and P. When P&a, we
have E,& 0, corresponding to diamagnetism. This
behavior is also revealed by the current density
whose lines circulate about the origin in accord-
ance with Lenz's law. When p &a, however, the
lines of ~ change dramatically. For example,
near the origin there is a paramagnetic circula-
tion. When a &P& 3a these contributions domi-
nate and E, &0 corresponding to paramagnetism.
When P = 3a, we find E, = 0 showing that this state
is nonmagnetic to second order. Finally, for p
&3a, E, is positive again. From Eq. (19) it is
found that

F=Z'@ [(a P)(a+P) -'xy+P(a' P') 'yx ']-
Example 3.—The ls ground state of the hydro-

gen atom has lnP, = Xr +const ,—where X. =2/ao(ao
=Bohr radius). The solution of Eq. (18) for this
density function is f = —(I+xr)/x'. Equation (19)E, = (e'B'/8mc')[2/(a +p) + 1/(a —p)] (a g p).

V, F = (-ieB/2hc) [x,.e„-y,e„—(Bf, /Bx, )e„+(Bf, /By, )e, —f,.e B (.lnP, )/Bx, +f,e„B(1nP,. )/By, ],
where I have used A,. = —,'Bx r, To demonstrate uniqueness consider the integral JP, '[V,&(h, P,)]2(d'"r. )
where h& =f,, —fz, is the difference between two assumed solutions of Eq. (18). Integration by parts in
the coordinates x,. and y~ using a slightly modifed version of Eq. (17) gives

fP [V )(h)P )] (d'"r) = —fh;P V„'[P 'V„(h~P )](d~r)

= —f (ds~~)h Po[V, , h, +. V,,h~ ~ V.„.(lnPO) +h, V~,. (lnP, )]=.0,

since h& must satisfy the homogeneous part of Eq.
(18). Since P, & 0, I conclude that V,&(h, P,)=0.
for all j making the current density unique. Fur-
thermore, since ],=]» Iy=I2 must also obtain so
that, from Eq. (16), the only solution is h,.=0.
Some exampIes will now be given.

Example 1.—An anisotropic oscillator in its
ground state has lnP, = —2ax' —2Py' —2''+ const.
The solution of Eq. (18) for this P, is f=-2(a
+P) '. Using Eq. (19), we find that F=(ieB/2')(a
-p)(a+p) 'xy. Finally, g(r)= —&(a+p) 'P, (r)
where JP,d'r= i.

Example 2.—A particular excited state of an
anisotropic oscillator has lnP, = ln(x') -2ax' —2Py'
—2yz'+ const. The nodal surf aces x= 0 introduc-
es a singularity into Eq. (18). The solution is f
= —(2a+2P) ' —[4(a'-P')x'] ', and it contains a
term in 1/x'. The second-order energy for this
state, which is useful for a not too close to P, is
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gives VE=0 and so I choose 8 =0. Thus g(r) =-X"'(1+Xr)P,(r) where JP,d'r =1. The current density
obtained from Eq. (14) agrees with Lamb's expression. '

Approximate solutions of Eq. (18) may be obtained by utilizing the corresponding variational prin-
ciple 61.(f) =0 where

L(f,)= f. (tf'"r)$& P,[(&f, /&x, )'+ (&f, /&.y,.)']+2f, P —. f~ —P (9'/9&,.'+ ().'/9y, ') lnP )
In conclusion, I emphasize the advantages of this approach to the calculation of magnetic properties.

First, because of its explicit form, Eqs. (14) and (15), the current density will always satisfy V i = 0
and l ~ B= 0. Second, since the f, equations are independent of the gauge of the vector potential, mag-
netic properties calculated from j will be gauge invariant. Both these advantages pertain to the cur-
rent calculated from approximate solutions to Eqs. (18) or (11) as well as exact solutions.

The author would like to thank J. D. Memory for his interest in this vrork and G. L. Hall for his help-
ful comments.
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Gauge invariance of the Schrodinger equation requires an eigenfunction in a new gauge, A =A+V'0, to be related

to the corresponding eigenfunction in the original gauge by the transformation 4 =exp[—ig (e/hc)8(r )]@. Thi.s gives
to first order, using +t =E%&, E'=E P„(ie/h—c)8(r ).
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invariant.
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