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Negative-Parity NN Resonances and Extraneous States

P. J. G. Mulders, A. Th. M. Aerts, and J. J. de Swart
?nstitlte fox Theoretical Physics, Nijmegen, The ¹thexlands

(Received 31 January 1978)

Angular momentum excitations of six quarks in a bsg give a rich resonance structure in
the NN channel above P»b—- 1.3 GeVlc. Some states occur with quantum numbers foreign
to NN, which we refer to as extraneous states. The lowest negative-parity states are an
(NN) I'& resonance and two extraneous I = 0 states with J = 0 and 2, all around 2.2
OeV. The latter two states maddy decay in NNx. The lowest (NN) F3 resonance lies at
M= 2.34 GeV.

Increasing experimental evidence' for some
resonances in the NN system is being reported.
The results on pp scattering with polarized tar-
gets and beams above Phb= 1 GeV/ cshow a sur
prisingly rich structure. Analyses~ ' of these pp
data indicate the existence of a resonance in one
of the uncoupled spin-triplet partial waves ('P„
'F„.. . ) at M = 2.3 GeV and possibly also a reso-
nance in one of the spin-singlet states ('S„'D„
. . . ) around M = 2.4 GeV. Angular distributions
and polarizations indicate that the 'E, assignment
for this uncoupled spin-triplet state is favored.
Deuteron photodisintegration experiments' give
evidence for a resonance around 2.38 GeV.

Conventionally' one tries to explain these reso-
nances as strong interactions with a channel coup-
led to the NN channel. A (not too deeply) bound
state in the coupled channel will show up as a res-
onance in NN, in the neighborhood of the thresh-
old for that channel. We note that the NN system
cannot have the quantum numbers I= 0, J~ = 0+, 0,
2,4, . . . andI=1, J~= 1+, 3', 5+, . . . . We call
states with those quantum numbers extraneous to
the NN channel and will denote them by X~~. Re-
cently Jaffe' proposed a quite novel type of reso-
nance. He indicated the possible existence of
bound states of six quarks in a bag. One assumes

here the quarks to be in 8 states of a spherical
bag. These resonances necessarily have positive
parity. One finds I= 1 resonances in the 'S, (I
=2.17 GeV) and 'D, (M = 2.36 GeV) waves and I= 0
resonances in the 'S, (M = 2.24 GeV) and 'D, (M
= 2. 36 GeV) waves.

The masses of these states which contain N= 6
nonstrange quarks can be calculated in the spher-
ical-bag approximation in which the mass opera-
tor is given by

4' B 3 +~ ~+ 34OO
c R

where B= 59.2 MeV fm ', Zo= 363 MeV fm, and
e,= 2.20 are the parameters determined from the
q' and qq spectrum. ' The nonstrange-quark ener-
gy is measured by e„=403 MeV fm and the color
magnetic-interaction strength by M„= 34.9 MeV
fm. The color magnetic mass splitting is deter-
mined by

~N(6-N)+ 33'+T'+ &F .

F' is the color SU(3) quadratic Casimir operator.
In the bag model the mass of a colorless state is
found by minimizing the eigenvalue of the mass
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operator with respect to R, which gives

M = yE'R (4B)

= T'(4')"'[Nn„-Z, +cE,M„~]"'.
This shows that in a spherical bag the equilibrium
energy density is 4B. In order to present the ba-
sic features of the calculations we will assume
one constant bag radius for all N quark states.
Equation (1) then simplifies to

N) I
I

I
I

/

M =A, +B,[I(J+ 1)+ s J(J+1)] (4)

for a colorless state with Ap= 2 126 GeV and Bp
= 58.7 MeV for N= 6. This approximation works
fairly well' and the radius for an N-quark system
can be parametrized as

R =r+"',
with yp=0. V2 fm.

To find the isospin and spin content of the states
it is convenient to consider the SU(4) isospin-spin
irreps to which the colorless N= 6 states belong.
The Pauli principle requires the color 1 irrep to
couple uniquely with the SU(4) isospin-spin irrep
[50].' ' The decomposition of this irrep into
SU(2) isospin I and SU(2) spin J' gives the follow-
ing (I,J) content:

[50]=(0,1)+(0,3)+(1,0)+(1,2)+(2, 1)+(3,0).

In order to get negative-parity states in the bag
model one has to consider either q'q states or q'
states with angular momentum (L) excitations.
The lowest nonstrange q'q states have a mass of
2.8 GeV" and can be discarded as possible can-
didates for the aforementioned resonances. To
introduce 1. excitations in a six-quark bag we will
follow a semiquantitative argument given by John-
son and Thorn. " For high L the bag (Fig. 1) gets
stretched to a. rodlike shape of length l with at
each end a certain number of quarks coupled to
opposite nonzero color charges. Taking the ener-
gy density E'/2 of the color electric field in be-
tween to be equal to 4B [see Eq. (3)] it follows
that the cross section A =QRp depends only on the
color charges at the ends. The mass M is then
given by

M = 4BAl = l(See Bf )+', (5)

where f' is the eigenvalue of the color SU(3) oper-
ator F' of the color irreps n and n* at the ends.
Qualitative1y the connection between M' and L can
be found by simply using the moment of inertia I
=Ml'/12 of a rod and if we assume that the ends
of the rod have velocity c then l&u/2 = 1 and L

FIG. 1. The stretched bag for L &0 with N& quarks
at one and N2 quarks at the other end.

=Ml'ar/12 =Ml/6 =M'/(24AB) Thi.s leads to linear
trajectories L -n'M' with the slope a' = (24AB) '
This slope depends on the color charge at the
ends of the bag. For ordinary mesons and bary-
ons with the color configuration 3-3* this becomes
e'=0.9 GeV ', which is exactly the universal
slope.

To estimate the masses of the stretched bag
states we make the following assumptions (Jaffe").
The Regge trajectories are asymptotically straight
with 1/a' = l.1 GeV'. As the color magnetic inter-
action is short ranged, a quark will only feel the
color magnetic interaction of those quarks which
are in the same end of the bag. In a stretched
bag we can write Eq. (2) as 6 =b, +b., where b, ,
contains the s'ummation over the N, quarks in one
end and ~, that over the N, quarks in the other
end of the bag. The ¹ quarks couple their spins
to the total spin S, and their isospin to the total
isospinI„ i =1,2. The intercept for L =0 is then
assumed to be the square of the mass (M,') of a
spherical bag in which the color magnetic inter-
action is restricted in the aforementioned sense.
The lowest intercepts are found for those states
with color charges 3 and 3* at the ends. Then

b =ho(N„N2;n-n*)+ (Ii +I2 )+ 3@i +52 ),

where 6, (1, 5; 3-3*)= —2 and 6, (2, 4; 3*-3)= —4.
The intercepts found in this way are not the phys-
ical states for L = 0, but they are useful to esti-
mate the mass of the Lw0 resonances. For L= 0
the physical mass will depend on the isospin I and
spin J=S of the total N-quark system, whereas
for Lc 0 it is determined by I„S„I„S,. The tra-
jectories are then labeled by N„N„f',I„I„S„S„
leading to (2I, +1) (2I, +1) (2S, +1) (2S, +1) degen-
erate levels with different IJvalues, where 3'
=L+5 with 5=5,+0, and P=(-1) . Spin-spin and
spin-orbit forces and coupling with other levels
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will f)robably remove most of the degeneracy.
To find the possible values for I, and 8; we

again turn to SU(4). For N, =2 states coupled to
the antisymmetric color SU(3) irrep 3*, the Pauli
principle requires that they belong to the symmet-
ric SU(4) irrep [10]with the (I„S,) content

[10)= (0, 0) + (1, 1).

The N, =4 states coupled to the color irrep 3
must be in the isospin-spin irrep [45] with the
(I„S,) content

[45]= (0, 1)+ (1,0) + (1, 1) + (1,2) + (2, 1).

For the q-q' trajectories the N, = 5 states belong
to the color irrep 3* and therefore must couple
to the SU(4) isospin-spin irrep [60] with (I„S,)
content

The values 5 = b, , + b,, of the q'-q4 (3*-3) and q-q'
(3-3*) trajectories are given in Table I, together
with the I,S values of these trajectories.

Starting from M, =A, +Bok for the intercepts
[see Eq. (4)] the masses of the L-excited dibary-
on levels can be written approximately in the
form

341 =AL +Bib, , (6)

where we take A~'=Ao'+ 1.U, . In order to satisfy
the condition of linear trajectories M g Mo

TABLE II. The coefficients Al. and Bz occurring in
Eqs. (4) and (6), for L = 0, 1,2 ~

A~ (QeV) Bg (MeV)

2.126
2.371
2.592

58.7
52.6
48.1

+1.1L,, we find BE=BgJA~ Th. e relevant val-
ues for A~ and B~ are given in Table O. The
masses M~ for L = 1 and 2 are given in the last
two columns of Table I. The pattern of levels
that is obtained is displayed in Fig. 2. In this
figure the q'-q~ and q-q' states are given. The
lowest states are q'-q4 states. In the upper part
of the level scheme q'-q' (6-6*) and q'-q' (8-8)
levels also will appear.

In the I= 0 NN channel the lowest negative-par-
ity resonance appears in the 'P, wave at 2.2 GeV.
Degenerate with this resonance two extraneous
states Xoo- and X„- appear. These states could
show up in ppv invariant-mass plots for the re-
action pp ~ppv

In the I= 1 channel we note that the lowest nega-
tive-parity levels exhibit equal spacing, starting
from a level at, 2.266 GeV, showing up as a reso-
nance in the 'I', wave. More resonances occur in
the I' waves at 2.301, 2.336, and 2.371 GeV. The

TABLE I. The quantum numbers of the q -q andy-q5 trajectories with color charges 3 and 3~ at the ends, Mid

the masses for L, = 1 and 2.

2 4
q -q

1 1 2 2

0 0 0 1 -10/3

0 0 1 0

0 0 1

1 1 0 1

-4/3

-2/3

0 0

1 1

1 1

1 2

1 0

1 1

GeV N GeV

2.196 2.432

2.266 2.496

2.301 2.528

0, 1,2 2.336 2.560

2.371 2.592

2.406 2.6242/3 0, 1,2

4/3 0, 1,2 0, 1,2 2.441 2.656

'2 '2

1/2 1/2 1/2 1/2 0

1/2 3/2 1

S M GeV M GeV

0, 1 0, 1 2.371 2.592

0, 1 1,2 2.424 2.640

3/2 1/2 3

3/2 3/2 4

5/2 1/2 8

1,2 0, 1 2.529 2.736

1,2 1,2 2.581 2.784

2, 3 0, 1 2.792 2.977

1/2 5/2 8/3 O, l 2, 3 2 ' 511 2.720

0 0 2 1 8/3 2.511 2.720

2 1

8/3 0~1~2 ii2 3 2 ~ 511 2 ~ 720

16/3 1 2 3 Oil 2 2.652 2-849
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0—

2, 3
1,2,3

0,1,2
1, 2
1

0, 1

0,1,2

1,2

0, 1

2,3
l, 2,3

0,1,2
1, 2
1

p, l
2

0,1,2

and 6-6* trajectories, spin-spin, and spin-Orbit
splittings. At present we do not know how to han-
dle all the details properly.

Concerning the general validity of our approach,
we think that our arguments are valid if the bag
is really stretched, i.e. , if l) 2R„where R, is
the tube radius. For the mass this requires 34

&SERO or for color 3-3* configurations M &2.1
GeV. We think that this condition is almost inde-
pendent of the number of quarks at each end. Be-
low 2. 1 GeV exchange forces between the quarks
have to be included. " For the dibaryons (lowest
mass -2.2 GeV) we therefore believe that the
main features are correct and we hope that these
results can be useful for the futo. re analyses of
the NN scattering experiments.
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Wetenschappelijk Onderzoek (ZWO). Two of us
(P.J.G.M. ) and (A. Th. M. A. ) are Research Asso-
ciates at FOM.

I=O

FIQ. 2. The L = 1 (P = -) q2-q 4 and q-q 5 levels.
The splitting is proportional to 6 according to Eq. (6).
The total spin S of the states has been given in the
figure. To find J, the spin 8 has to be combined with
L = 1.

resonances at 2.34 and 2.37 GeV also appear in
the 'E, wave. Because of the appearance of sev-
eral resonances in the energy region below 2.4
GeV, the analysis of the pp data is much more
complicated than expected. It is noteworthy that
most of the low-lying resonances appear in the
triplet uncoupled states' 'P, and 'E, and that the
highest 8 in this region' is 3.

Still below the h4 threshold some extraneous
states occur with I=2, for instance X„,X„-,
and X»- at M = 2.41 GeV, which might appear in

ppm+ invariant-mass plots.
To conclude we want to stress that this is an

estimate of the NN resonance spectrum. In mak-
ing this estimate many effects have been neglect-
ed such as the coupling between the color 3-3*
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