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were prepared from material supplied by Cominco
American Inc. , Spokane, Washington. The single crys-
tal was prepared by a zone-leveling technique (from
materials supplied by Johnson-Matthey 5 Co. , Ltd. ,
London, England) as described by C. Uher, H. J. Golds-
mid, and J.B. Drabble, Phys. Status Solidi (b) 68, 709
(1975).

J. P. Straley, Phys. Bev. B 15, 5788 (1977).

We define the critical temperature as the highest
temperature at which the SQUID detector (sensitivity
of about 10 '4 V) does not indicate any voltage. The
critical temperature is then obtained by extrapolating
to zero current density.

6C. Uher and W. P. Pratt, Jr. , Phys. Bev. Lett. 39,
491 (1977).

'Uher, Goldsmid, and Drabble, Bef. B.

Friedel-Type Oscillations in One-Dimensional Antiferromagnetic Insulators

G. Baskaran ')

International Centre for Theoretical Physics, Trieste, Italy
(Received 14 February 1978)

An impurity spin in one-dimensional spin-& X-Y and antiferromagnetic Heisenberg
models is shown to induce decaying spatial oscillations of magnetization for finite mag-
netic field. The wavelength of oscillation changes with magnetic field. Since these sys-
tems can be described mathematically in terms of a degenerate gas of pseudofermions,
their response to impurity perturbation is similar to the response of an electron gas to a
localized static charge.

It is known that the spin-2 X-F and antiferro-
magnetic Heisenberg models with nearest-neigh-
bor interaction in one dimension can be trans-
formed into a problem of noninteracting (for X-
Y) or interacting (for Heisenberg) fermions of
zero chemical potential by using the Jordan-Wig-
ner transformation. " This transformation has
been used by many authors in the prediction and
study of Peierls spin instability in the compres-
sible one-dimensional spin-2 X-Y model~ and
antiferromagnetic Heisenberg model, ' and their
Fermi-gas-like thermodynamic behavior. ' In
the present work this transformation is used to
show the Friedel-type spatial oscillations of the
pseudofermion density around an impurity in the
one-dimensional spin-2 X-Y and antiferromag-
netic Heisenberg models. The impurity magnetic
atom has a spin-2 magnetic moment; however, it
has an exchange integral J, with its two neighbors
which differs from J, the nearest-neighbor ex-
change integral among the host spins. It is found

that the magnetization induced at the ith site for
large R& is

J-J, h sin 2@FR;

where R; is the distance of the ith site from the
impurity, and k F is a wave vector which depends
on the ratio of the magnetic field h to the ex-
change integral J. This asymptotic oscillatory
behavior disappears for zero magnetic field be-
cause of a particular momentum dependence of
the pseudofermion scattering-matrix elements
of the impurity perturbation. The physics behind
this oscillation is the same as that behind the
Friedel oscillation in a degenerate electron gas. '
It arises because of the singular response of the
Fermi gas in the ground state to perturbations
with wave vector equal to twice the Fermi wave
vector (2k F).

Consider the case of the X-Y model. The Ham-
iltonian of the X-Y model containing an impurity
at the origin is

H =JQ(S; S;+,"+S; S;+, )+h QS +(J', —J) 2 (So"Sn"+So S~ ),
i

where h is the magnetic field in energy units and S;",S,S are the three components of the spin opera-
tor (S =2) at the ith site. By using the Jordan-Wigner transformation

S =—S;"+iS =(2)' 'exp(imZC;tC&)C;, S; -=S;"—iS =(2)' 'C;exp( in QC, tC-, ),
8 1S; =2 —Cg C;,
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the Hamiltonian may be written as

II=PIC,. tC,.- k+C; C; —2kN+ z(J, —J) Q (C, C~+C~ Co)
i i

=pe„C,C~+ ' Q([coska+ cos(k- q)a]C, CI, ,}—2~, (3)

where

Ca =
~~

Qe'" "Cn i. Ca = y~Ze
'" "

n n

k =J cosk& —@

Here C;,C; and Ck, Ck are the pseudofermion
creation and annhilation operators, respectively,
in the site and momentum representations, N is
the total number of sites, and vis the lattice pa-
rameter. The chemical potential of these spin-
less fermions is zero. '

Consider the case in which the impurity per-
turbation is absent, i.e., J=J,. The ground-
state average of S in the absence of the mag-
netic field' is zero, i.e. , (S ) =0 for alii. ' Us-
ing Eq. (2) we get (C, C;) = 2. Thus the ground
site corresponds to a half-filled band of noninter-
acting fermions. As we apply the magnetic field,
the mean magnetization and hence the mean occu-

!

pation number change. This means that the Fer-

!
mi wave vector also changes with magnetic field.
The Fermi wave vector is given by the solution
of the equation"

=Jcosk Fa-h, =0,

so that

kF =a 'cos '(k/2).

The impurity spin only alters the exchange in-
tegral with its neighbors his is a localized per-
turbation. So, now the problem reduces to study-
ing the effect of a localized perturbation on a non-
interacting Fermi gas. From the theory of de-
generate Fermi system it is well known that the
Fermi gas responds in a singular way at 2kF in
the ground state. In particular, the linear re-
sponse in one dimension diverges logarithmically
at 2k F. In linear-response theory, the induced
fermion density or the induced magnetization
(&0.,) at the ith site is given by

(j-J,)~ coska(n, -n„,)b,o; = —Ayg; =— ' ' exp(iq-A;j.N k Ek Ck-q

~(~ -Z, ) k sin(2k„x,)
2J J 2kFA;

(6)

Note that the above asymptotic oscillatory part of
«; vanishes identically as k tends to zero. This
has the following meaning: The oscillatory be-
havior arises because of the logarithmic diver-
gence of the response function at 2kF. The virtu-
al transitions which give rise to this singular be-

where nk is the Fermi distribution function. The
factor coska arises from the momentum depen-
dence of the one-body scattering potential, name-

ly [coska+ cos(k —q)a] of Eq. (3). This particular
dependence on the initial wave vector k and the
momentum transfer @q gives rise to an interest-
ing field dependence of the oscillatory part of

The above expression can be evaluated in
the free-fermion approximation (i.e. , using para-
bolic dispersion for the fermion energy) for large
A; as'

! havior correspond to a momentum transfer + 26k F

and the initial momentum -+ hk&, respectively.
At zero field, k„=m/2a and the matrix element
of the above virtual transitions becomes very
small and indeed vanishes identically for the ini-
tia. l wave vector of + m/2a and momentum tra.ns-
fer of + 2h(m/2a): cos[(~/2a)a]+ cos[(m/2a -m/a)a]
=0. At zero magnetic field the dominant asymp-
totic term behaves as 1/A . As the magnetic
field is changed, k F moves away from m/2a and
the matrix element of the above processes be-
come finite and the induced magnetization re-
gains the asymptotic form (6). The free-fermion
approximation is not valid for large magnetic
field where kF =z/a.

I have gone beyond linear-response theory and
calculated the exact expression for the induced
magnetization or fermion density in terms of the
single-particle Green's functions' ' but I do not
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reproduce the results here.
Consider the pure Heisenberg antiferromag-

netic system. Compared with the X-Y model this
has the extra term JQ;8 8;„'.In terms of the
pseudofermion operators, this term can be writ-
ten as

—JLC» C»+ J5~ cos(qa)C»~C», C» C»i+, .
k0k

Bulaevskii' considered this antiferromagnetic
model in the Hartree approximation and obtained
the following results. The Hartree single-parti-
cle energy is

induced magnetization oscillates, is of interest
to us; this corresponds to k/2J(1. For this lat-
ter case, the solution of the self-consistent equa-
tion is

k/J = [1+(2/m)cosa&]sin~v+ 2&,

p = 1+ (2/m)cosmv.

The Fermi wave vector is given by the expres-
sion

e»F = —20'J-k+pJcoskFa =0,

so that

e» = —2cJ—k +pJ coska,

where

p =-,' —2Z(n») coska.
k

(8) 1,8+204
kF = —COS ~a

For k/2J( 2, from Eq. (9) we find that &=@/J(m
+4) and hence

In the above expression, the average is taken in
the noninteracting ground state with single-parti-
cle energy given by Eq. (8); p and & are calculated
in a self-consistent way. For k/2J & 1, there is
complete ferromagnetic ordering; this corre-
sponds to the completely filled band. Only the
partially-filled-band case, where the impurity-

1, k[1+2/(m+ 4)]
a J{1+(2/m) cos[km/(m+4)]]f

Thus the va, riation of kF with h differs from that
for the X-~ case.

The presence of the impurity gives additional
one-body and two-body scattering terms,

(J, —J) Z (C ~Cg+C~CO) —p(J, —J)(C,~C, +2CO C, +C,tC,)+(J, —J) Z CO COC~ C~, (12)

which can be treated in the Hartree approximation. After the Hartree approximation is made, the prob-
lem is similar to the X-& problem and we get the following asymptotic expression for the induced mag-
netization:

(J-J,) k[1+2/(~ + 4)] sin(2k „a,)
J 2J(l+ (2/m) co[sk/~(4 m+)jg (2kFA) (13)

The amplitude of the oscillation vanishes for 0
=0, again for the same reason elaborated in the
X-'Y case. The Hartree approximation discussed
now predicts divergence of the susceptibility at
M F and hence the impurity-induced oscillation.
Will this oscillation remain even if we go beyond
the Hartree approximation~ The susceptibility
of an electron gas with short-range interaction
in one dimension calculated by going beyond the
Hartree approximation with use of renormaliza-
tion-group techniques does show divergence at
2k F in the ground state. " Since the present prob-
lem is mathematically similar to the electron-
gas problem, one expects a similar divergence
in the response function and hence the oscillation.

The oscillation discussed so far is a purely
quantum mechanical phenomenon; it is easily

! shown to be absent in the classical (S-™)X-Y
and antiferromagnetic models in one dimension.
So one expects it to happen for any finite impur-
ity and host spins. A preliminary calculation by
the a.uthor using the spin-wave approximation
shows that there is oscillation for any finite-spin
ca,se.

In real systems there are three important fac-
tors which damp these oscillations. The first
one is the temperature. The oscillation is ex-
pected only in highly degenerate Fermi gas and
at temperature much lower compared with the
Fermi temperature (=pJ/k&), i.e. , k, T/pJ«1.
Around and above the Fermi temperature, there
is only exponential damping and no oscillation.
Much below the Fermi temperature and above
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the absolute zero of temperature, there is oscil-
lation whose amplitude is at most damped by the
term

When ks T/PJ 0.05, this damping becomes effec-
tive only beyond R distance ten time the constant
lattice from the impurity.

The second factor is the Peierls spin jnstabi1-
ity. ' ' In the Peierls spin instability the spin-
phonon (pseudofermion-phonon) interaction opens
a gap at the Fermi surface below a critical tem-
perature. This gap (&) also exponentially damps"
the oscillatory term by

-A;kF
exp

( ~/~) ~

The third factor is the three-dimensional mag-
netic ordering. The weak magnetic interaction
among the chains becomes effective at very low
temperatures and brings in three-dimensional
magnetic ordering. Below the three -dimensional
ordering, the present treatment is not valid and
one intuitively expects strong damping. Hence
the observations of these oscillations are possible
at temperatures very low compared with the Fer-
mi temperature but slightly above the largest of
the Peierls instability temperature or the three-
dimensional ordering temperature.

The compounds CuCI, 5H,O and CuC1, 2NC, H,
are good representatives" of one-dimensional
spin-~ antiferromagnetic Heisenberg models.
They also satisfy the above-mentioned require-
ments. The Fermi temperature (=pJ/ks) and
three-dimensional ordering temperature are
2.7'R and 0.03'K, respectively, for CuC1, ' 5H, O;
20'K and 1.7'K, respectively, for CuC1, 2NC, H, .
Copper which has been deprived of one of its d
electrons is the magnetic ion in these compounds.
The relat1vely RbundRnt Cu nucleus being R good
NMR nucleus, Knight-shift studies by NMB"
should reveal these oscillations at temperatures
just above the three-dimensional ordering tem-
perature. Moreover, the magnetic field neces-
sary to have appreciable amplitude of oscillation
(i.e. , h/J') in these compounds is 10 kG, which
is not very high.
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