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Li ions. When the composition is changed the
system passes through regions of composition
where ordering fluctuations occur, leading to
peaks in the "compressibility. " Between the
compressibility peaks the lithium form a disor-
dered liquid. With this analogy to the thermody-
namics of liquid-gas systems, it is anticipated
that high-resolution and temperature-dependent
electrochemical studies can be used to study the
Li„TiS,phase diagram in detail, including criti-
cal-exponent studies near ordered compositions.
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Using angle-resolved photoemission and synchrotron radiation, we have determined
the energy-versus-momentum valence-band dispersion relations for a Ni(111) crystal.
The temperature-dependent ferromagnetic exchange splitting has been directly observed.
Both the d-band width (-3.4 eV at L) and exchange splitting (0,31 eV) are much smaller
than theoretical estimates (- 4.5 eV wide at L vrkh - 0.7-eV splitting, respectively, at
293 K).

Nickel has been a prototype metal for innumer-
able studies of various physical properties in-
volving itinerant-electron ferromagnetism, d-
band electronic structure, and transition-metal
surfaces. Despite intense study, two basic as-
pects of Ni have remained controversial and un-
resolved, i.e., the overall d-band width and the
exchange sp1itting. For example, angle-integrat-
ed photoemission estimates of the d -band reso-
nance width" (-3.3 eV) are narrower than self-
consistent one-electron band theory estimates' '

(-4.5 eV). One explanation given for the ob-
served narrow d bands is that photoemission
samples only a few atomic layers and band nar-
rowing occurs at the surface. '" Another recent
explanation of the narrow experimental widths
is tha, t the lower d states in Ni have very short
electron hole lifetimes. ' However, several re-
cent ang1e-reso1ved photoemi ssion experiments
report larger widths (e.g. , = 4.2 eV) ' or "agree"
with theory. ' '" Photoemission, optical, and
theoretical studies of the magnetic exchange split-
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ting" have been even more uncertain, with many
experimental studies reporting negligible or un-
observable splittings' " ' and theoretical stud-
ies' ' typically reporting large (-0.6-0.9 eV) and
uncertain splittings. Two recent angle-resolved
photoemission studies have reported exchange
splittings of -0.3 eV" and 0.5 eV."

Using angle-resolved photoelectron spectroscopy
with linearly polarized synchrotron radiation, we
have experimentally determined the energy-ver-
sus-momentum dispersion relation Rlong the
I"-L direction in the Brillouin zone for several
bands in nickel. The magnetic exchange splitting
of the upper A, d band has been directly observed
(5E,„=0.31~0.03 eV at 293 K). The minority A, &

band is observed to cross the Fermi surface at
&~/& Bz""'= 0.8 (where && and & ~z""' are the
electron momentum and zone-boundary momen-
tum), and the majority band extends from E(A,t)
= —0.15 eV at L to E (A, t) = —O.VO eV at I', meas-
ured relative to the Fermi energy EF. The tem-
perature dependence of the exchange splitting
&E,„hasbeen measured for 293 K&T & 793 K).
6E,

„
is observed to decrease from 0.31 eV (293

K) to & 0.15 eV for T& T c (651 K). This behavior
is intermediate between long-range-order models
such as a simple Stoner-Wohlfarth-Slater (SWS)
model" which predicts, that &E,„(T)varies as the
magnetization, and localized intra-atomic ex-
change models which predict no temperature de-
pendence. Comparison of our measured E-vs-&
dispersion curves for several bands with theory4'
shows that the individual d bands are theoretical-
ly about 1.4 times as wide as found experimental-
ly. Likewise, the overall experimental width is
-3.4 eV (EF to L,), while theoretical values are"
about 4.8 eV (spin-polarized von Barth-Hedin po-
tential and Kohn-Sham potential).

Experimentally, we have used an angle-re-
solved cylindrical-mirror analyzer (GMA) double-
pass spectrometer system and a two-dimensional
(2D) display-type spectrometer that displays the
angular distribution of photoelectrons within an
energy pass band ~E and a 1.8-sr solid angle
(86' cone). The CMA system was used for s-po-
larization measurements and was operated with
an angular acceptance &8 =4 and overall energy
resolution of -150 meV using synchrotron radia-
tion from the 240-MeV storage ring at the Univer-
sity of Wisconsin. The 2D spectrometer was
used for p-polarization measurements and was
operated with an angle-resolved detector set at
68 =4 and an overall system resolution of -100
meV using the same source. Count rates were
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FIG. 1. ABEDC's showing temperature-dependent
exchange splitting 6E~„=1.0M,~„(seetext). The ex-
perimental conditions (h p = 9 eV, emission at 8 = 80'
in the t 1121 direction in the (110) mirror plane with
radiation polarized perpendicular to the (110) plane)
ensure that only one band is observed within - 1 eV
of E~ {see Fig. 4 inset).

typically -10'/sec for the Ni d bands under these
conditions for 6 ~ h v ~ 20 eV. Both s- and P-polar-
ization measurements were needed to determine
band symmetries and to delineate bulk and sur'-
face-state emission. In both systems, a Ni(111)
crystal was prepared by Ar-ion etching and an-
nealing in the usual manner, checked for cleanli-
ness using Auger spectroscopy, and measured in
working vacuums in the 10 "-Torr range. Spec-
tra for heated samples were taken using a puj. sea
heating technique with the spectrometer gated off
during the heating pulse to avoid spurious mag-
netic fields.

In Fig. 1(a) we present an angle-resolved ener-
gy distribution curve (AREDC) which shows emis-
sion from the exchange- split uppermost d band.
For the experimental conditions of Fig. 1, only
the uppermost d band is observed (to be dis-
cussed). A line-shape analysis using a spin-split
SWS model with two Lorentzian spectral functions
of equal integrated intensity yields peaks at —0.19
and —0.4V eV with a peak splitting &,„=0.28
+ 0.03 eV [see Fig. 1(a)]. Because these two di-
rect interband transitions take place at slightly
different% points, the vertical d-band exchange
splitting &E„differsfrom &,„bya small cor-
rection factor [equal to the ratio of d-band to con-
duction-band slopes of So, neglecting the small
effect (& 3%) due to the conduction band exchange
splitting; thus, we determine an exchange split-
ting 6E,„(293K) =0.31+0.03 eV. The lower peak
[= 0.50 eV full width at half-maximum (FWHM)]
is substantially broader than the upper peak
(= 0.30 eV FWHM) because of an increased Auger
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FIG. 2. Experimental temperature-dependent d-band
splitting, compared with several theoretical models
(see text).

lifetime broadening which increases away from
EF ~

As seen in Fig. 1(b), the observed d-band line
shape is narrower for T =693 K (Curie point T c
=651 K) than for 293 K, with the lower energy
edge shifting upwards toward EF and the peak in-
tensity increased. This upward shift is expected
since the minority band is strongly pinned with a
large density of states at EF. Using the same
line- shape analysis with linewidths kept fixed
yields a residual splitting of &,„=O.j.7 eV, which
corresponds to 5E,„(693K) = 0.19 eV. This re-
sult gives an upper bound for 5E,„(693K), be-
cause a line-shape analysis with any additional
temperature-dependent broadening for 7 ~ T c
yields a smaller estimate. "

A summary of our experimental 6E,„(T/Tc)is
given in Fig. 2 (curve 1), for which an analysis
with temperatur e-independent linewidths was
used. In Fig. 2, three curves showing possible
temperature-dependent exchange splittings are
also shown: (2) the measured saturation magneti-
zation ~,(T/Tc)/M, (0), which is a measure of
long-range order, (3) a temperature-independent
curve, which would correspond to a localized in-
tra-atomic exchange interaction, and (4) the
short-range order-parameter curve due to Ogu-
chi" (based on interacting localized S = 2 mo-
ments).

We have measured normal emission AREDC's
for Ni(111) with s- and P-polarized radiation for
5(hv& 25 eV, and have determined the E-vs-&&
dispersions (&i =momentum along A) for the up-
per ~, and 4, d bands and the lowest', s band.
Several representative AREDC's showing direct
interband transitions are given in Fig. 3, and
a summary of E-vs-&i band dispersions is given
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FIG. 3. AREDC's for normal emission from Ni(111)
showing h v-dependent and polarization-dependent direct
interband transitions.

in Fig. 4. The E and && points were determined
as follows: For each observed transition at a
photon energy, the initial energy is directly
given by the AREDC and &i (+ 8fo accuracy) is
given by that of the calculated nearly-free-elec-
tron-like ~, conduction band involved" in the
transition (e.g. , shown in Fig. 4 shifted down by
kv =9 eV). If we assume direct interband transi-
tions, only one conduction band is involved for
normal emission from Ni(111) with hv & 20 eV,
thereby yielding unambiguous &i assignments. In
this case, transitions from A, -symmetry valence
bands are allowed with P-polarized radiation (di-
pole approximation), while A, - symmetry bands
are allowed with s polarization. The selection
rules permit unambiguous assignments of experi-
mental bands (see Fig. 3; these rules are not
strictly obeyed because we have mixed s and p
polarization, with - 80% linearly polarized radia-
tion).

ln Fig. 4, we show bands (dotted lines) calculat-
ed by Wang and Callaway using a Kohn-Sham po-
tential. ' The ~, bands have been spin-averaged
since hole lifetimes preclude observation of the
exchange splitting for E~( —0.5 eV." As seen in
Fig. 4, the theoretical width of the A, I band (-0.8
eV), EF —A, ~;„(2.6 eV), and EF-L (4.8 eV) are
all about 1.4 times as large as experimentally
observed. Likewise, the calculated exchange
splitting' is -2-3 times as large as measured.

In summary, we have determined dispersion
relations for several bands in Ni and have ob-
served exchange- split bands which show that fer-
romagnetic Ni can be described by a SWS spin-
split band model. Our results are consistent
with Fermi-surface results ' and spin-polarized
photoemission results, '" and the exchange split-
ting is consistent with the Bohr magneton number
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FIG. 4. Experimental E-vs-4& ~ energy-band dis-
persions for Ni(111) along A. A sixgle conduction band
Ntef. 16) is involved for kv6 20 eV and is shown for
hv = 9 eV (shifted down by hv). The hollow circles are
data taken for Ni(ill) + -0.1 Torr-sec 02, which re-
moves a surface state at —0.25 eV, but does not sig-
nificantly affect bulk emission. The triangles denote
bands crosshg the Fermi surface as given by de Haas-
van Alphen data (see Befs. 4 and 5; the spin-orbit split-
ting of A3i is shown along A). The light dotted curves
are calculated bands (Ref. 4) (Kohn-Sham potential).
The inset shows E-vs-k„dispersion for k« in the [ 112I
direction for h v = 9 eV; the dotted line 6 = 30' cor-
responds to the data in Fig. 1(a). The zone-boundary
momenta are kE '"I= 1.66 A ' and kE (" &= 1.46 A '.

of Ni and Stoner gap ~.' ' We find a smaller
~E,„andnarrower d bands than given by band
calculations. ' ' The discrepancy in d-band width
may be related to the fact that theoretically the
d-band energy position is too far above the muf-
fin-tin zero, ' which is pinned near the bottom of
the lowest A, band (see Fig. 4). Two recent stud-
ies have reported exchange splittings of 6E,„=0.3
eV' and &E« =0.5 eV." In the former case, one
of the two observed structures was incorrectly
assigned to an indirect transition from A,~, but
is due to a &, surface-state feature (to be pub-
lished). In the latter case, we have observed for
the same experimental parameters that the re-
ported 0.5-eV structure (kv =16.8 eV} is due to

two different interband transitions.
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