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Frequency and Temperature Dependence of the Sound Veloc&ty
in Amorphous Materials at Low Temperatures

G. Bellessa
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(Received 9 December 1977)

Measurements of the sound velocity in vitreous silica and in amorphous metallic Pd-Si
between 0.4 and 20 K and in the frequency range 10-450 MHz are reported. Above 4 K,
the sound velocity varies linearly versus temperature and logarithmically versus fre-
quency. From the analysis of the experimental results it is shown that the linear temper-
ature dependence of the sound velocity cannot be explained with relaxation processes.

Sound velocity in amorphous materials has been
extensively studied at low temperatures. It has
been shown that below a certain temperature
(around 2 K) the sound velocity decreases loga-
rithmically as the temperature decreases. "
This law results from a resonant interaction be-
tween the acoustic wave and some low-energy ex-
citations. Above 2 K the velocity decreases with
increasing temperature. This variation is usual-
ly explained by taking into account relaxation
processes. ' Between 4 and 20 K, a linear tem-
perature dependence of the velocity has been re-
ported in amorphous metallic Ni-P' and in amor-
phous selenium. ' In vitreous silica such a law

seems also to have been observed. ~ In the pres-
ent Letter, I report measurements of the sound
velocity versus temperature and frequency in vit-
reous soda silica and in amorphous metallic Pd-
Si. The temperature dependence is indeed linear
between 4 and 20 K. Thus, this law seems to be
universal in amorphous materials. It is very dif-
ferent from the usual T law of the sound velocity
in crystals. ' Furthermore, I report a velocity
variation versus frequency which obeys a loga-
rithmic law. These properties cannot be ex-
plained with the existing theory of the ultrasonic
dispersion in glasses. "' From the analysis of
the frequency and temperature measurements, I
deduce that the linear temperature dependence of
the sound velocity cannot be explained with relax-
ation processes.

The sound velocity has been measured between
0.4 and 20 K and, in the frequency range 10-450
MHz. The velocity measurements are made with
a phase comparison method. Hence, only a rela-
tive variation of the sound velocity can be mea-
sured precisely. The temperature dependence of
the sound velocity for different frequencies is re-
ported in Fig. 1 for vitreous soda silica. It ap-
peax's that the velocity variation in this tempera-
ture range is much stronger than in crystals' and

that above 4 K the velocity depends linearly on
the temperature within a very good accuracy. In
Pd-Si the same law is observed in the same tem-
perature range. ' The corresponding measure-
ments are not plotted on a V(T) diagram in order
to limit the number of figures. Nevertheless,
they appear implicitly in Fig. 2. In Fig. 1, I
have taken for the velocity reference the value at
0.4 K. In order to compare the sound velocity
values for different frequencies, I suppose that
at 0.4 K the velocity is not frequency dependent.
This hypothesis is important and I shall prove it
in the next paragraph. It appears in Fig. 1 that
above 4 K the velocity is frequency dependent and
that at a fixed temperature, the velocity increas-
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FIG. 1. Variation of the velocity of longitudinal sound
waves as a function of temperature for different fre-
quencies in vitreous soda silica. The velocity varia-
tion is relative to the value at 0.4 K. The longitudinal
wave velocity is 5.8 & I cm/sec.
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FIG. 2. Variation of the velocity of transverse sound
waves as a function of frequency for different temper-
atures in amorphous metallic Pd-Si. The velocity var-
iation is relative to the value at 0.4 K. The transverse
wave velocity is 1.8 && 105 cm/sec.

es with increasing frequency. Measurements of
these variations are reported in Figs. 2 and 3 for
soda. silica and Pd-Si, respectively. For the two
samples, the velocity variation versus frequency
obeys a logarithmic law. An important property
which appears in Figs. 2 and 3 is that the straight
lines fitting the experimental points are nearly
parallel. There is indeed a slight departure from
the parallelism but it can be neglected in a first
analysis. The slopes of the straight lines are 2.8
x 10 Bnd 3.5x 10 ' for soda silica and Pd-Si, re-
spectively. These values are almost the same as
those obtained for the logarithmic temperature
variation of the sound velocity below 2 K and
which are 3.6X10"~ and 5.9&&10 ' for soda silica
and Pd-Si, respectively. The latter have been
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FIG. 3. Variation of the velocity of longitudinal sound
waves as a function of frequency for different temper-
atures in vitreous soda silica. The velocity variation
is relative to the value at 0.4 K.

obtained from velocity measurements between
0.4 and 2 K (Fig. l) and are in agreement with the
results already published on vitreous silica' and
on Pd-Si.

In order to justify the hypothesis made in the
preceding paragraph, I undertake now to show
that the sound velocity does not depend on fre-
quency around 0.4 K. It is well known that there
are in amorphous materials two-level systems
with a broad distribution of their energy split-
ting. ' '" At low temperatures, there is a reso-
nant interaction between these two-level systems
2nd the sound wave. This interaction leads to an
increase of the sound velocity with increasing
temperature according to a logarithmic law. ' It
has been already pointed out that this law does
not depend on frequency. ' This does not mean
that the velocity is itself frequency independent.
To prove this point, it is necessary to return to
the general formula giving the sound velocity var-
iation due to the resonant interaction'

where + and w, are two ultrasonic frequencies, m~ is a cutoff frequency, M is the coupling constant
between the two-level systems and the ultrasonic wave, and n, is the two-level system density of states
which is assumed constant up to co„. The integral of Eg. (l) can be performed on the interval [0,~)
analytically so that

V(~) —V((go) noM R
l @(d l @~o

pV' 2 2 ink sT 2 2 inks T (2)
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where g is the logarithmic derivative of the y function. At low temperatures (h&u»k~T), Re((z) can be
approximated with in~z. Then Eq. (2) becomes

4V no j/t

y y2

Hence, the slope is the same as that of the logarithmic temperature variation. At high temperature
(K~ «k~T), Eq. (2) can be written

V pV* (2) (2~k, T) (2rk~T), ' (4)

This variation is very small (as compared with the velocity variations measured in the preceding para-
graph) and can be neglected. These results are consistent with those of Golding, Graebner, and Kane
who have evaluated numerically the variation of the velocity versus temperature. " Equation (4) means
that there is no frequency dependence of. the sound velocity in the temperature range where the loga-
rithmic temperature law holds (R(a& «k BT). I have experimentally verified that around 0.4 K the sound
velocity increases logarithmically with increasing temperature for all the frequencies used. Hence the
hypothesis made in the preceding paragraph is justified. However it must be mentioned that a devia-
tion from the logarithmic temperature dependence has been reported elsewhere. " Nevertheless, this
deviation is very small and appears at higher frequencies than those considered here.

My results show a frequency and temperature dependence of the sound velocity above 4 K. So, it is
natural to attempt to explain it with the existing theory of structural relaxation. " In this theory, a
complete description of the effect of the relaxation of two-state structural defects on the elastic proper-
ties of glasses at low temperatures is given, The sound velocity variation due to this relaxation is giv-
en by'

kp

where D is the deformation potential of the two-
level systems and v is a relaxation time. This
formula leads in the limit wv'»1 to a sound ve-
locity variation which is strongly temperature de-
pendent (proportional to T') and inversely propor-
tional to the square of the frequency. '~ These
laws are not experimentally observed between 4
and 20 K. This does not mean that the relaxation
of the two-level systems does not exist. It has
been observed in sound attenuation experiment be-
low 2 K.' However, above 4 K it can be supposed
that the relaxation has reached its maximum (in
the limit rue«1). Hence it would no longer change
the sound velocity.

There is in glasses another structural relaxa-
tion which is a thermally activated relaxation. '
In this process there is no longer tunneling through
a potential barrier but only thermal activation.
In order to attempt to explain our results with
this relaxation, it is necessary to know the dis-
tribution of relaxation times. Anderson has put
forward a very simple hypothesis on this distribu-
tion in amorphous materials. " He Considers a
relaxation time

! -const. Using Eq. (6) it is then easy to solve the
general equation giving the sound velocity varia-
tion due to relaxation processes":

V((o) —V(~) ""
p(v)d~

A

Eqs. (6) and (7) give immediately

b, V((o, T) =AT ln(u&v, .„), (8)

where ~;„is a normalization constant (mr, „
&1). Equation (8) gives the frequency and tem-
perature dependence consistent with our experi-
mental results. Unfortunately, according to Eq.
(8), the slopes of the curves in Figs. 2 and 3
should be proportional to the temperature and
this is not the case. So the thermally activated
relaxation model fails also.

The preceding analysis shows that our experi-
mental results cannot be explained with a relaxa-
tion theory. My experimental law can be put with
a good approximation in the form

b V/V =AT +B in@,
T) = 7' exp(V, /k BT ),

with a distribution of activation energies p(V, )

(6) where A and B are two constants independent of
frequency and temperature, respectively. Thus,
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it is reasonable to assume that the two terms of
Eg. (9) arise from different physical processes.
As it has been already pointed out, the constant
B is almost eilual to the factor n, M'/qV' of Eq.
(3) for soda silica and Pd-Si. So the second term
of Eq. (9) may result from the resonant interac-
tion between the ultrasonic wave and the two-lev-
el systems. The last point but not the least is
that the first term of Eq. (9) does not seem to be a
relaxation term. It gives a large variation of the
sound velocity (in comparison with the variation
of the sound velocity in crystals in the same tem-
perature range), and may be due to the strong
anharmonicity of the disordered lattice.
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Inversion, through direct absorption of far-infrared laser light, of a three-level elec-
tronic system of V ' ions in dilute solution in Al&03 leads to stimulated emission of 24.7-
cm ' phonons. Stimulated phonon emission manifests itself in the presence of ballistic
flow of longitudinal phonons along the c axis of A1203, but this flow is not observed under
spontaneous phonon emission.

We report direct observation of the stimulated
emission of 24.7-cm ' (0.74 THz) phonons. Stim-
ulated phonon emission is achieved by inversion
of a three-level electronic system of V4' ions in
Al,o, and is detected through an analysis of the
time-of-flight spectrum of the phonon propagation.

The lowest-lying three electronic states of the
3d' configuration of AI,O,:V"have been known for
some time, ' ' as have the group-theoretic selec-
tion rules for electric-dipole transitions among
these states. 4 As indicated in Fig. 1, the ground

state (numbered 1 in the figure) transforms as
the E», (A, ~, in McClure's notation') representa-
tion of the C, double group; the first excited state
(numbered 2) appears at 28. 1 cm ' (0.84 THz)
above the ground state with a half-width of -2
cm ' at liquid helium temperature and is known
to transform as E~„and the next excited state
(numbered 3), which appears at 52. 8 cm ' (1.58
THz) above the ground state with half-width of
-3.5 cm ', also transforms as Ez,. Electric-di-
pole absorptive transitions from the ground state
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