<sup>(d)</sup>Permanent address: University of Tokyo, Tokyo, Japan.

<sup>(e)</sup>Now at Physikalishes Institut, Technische Hochschule Aachen, Aachen, Germany.

<sup>1</sup>For  $\pi^0$  correlations, see K. Eggert *et al.*, Nucl. Phys. B98, 49 (1975); F. W. Büsser *et al.*, Phys. Lett. <u>51B</u>, 311 (1974). For charged-particle correlations, see M. Della Negra *et al.*, CERN Report No. CERN/EP/ PHYS77-10 (to be published); see also recent reviews by G. C. Fox and H. J. Frisch, Brookhaven National Laboratory Report No. BNL-50598, edited by H. Gordon and R. F. Peierls, Proceedings of the American Physical Society Meeting, Division of Particles and Fields, Upton, New York, 1976 (unpublished); by H. Bøggild, in Proceedings of the Seventh International Symposium on Multiparticle Dynamics, Kayserberg, June 1977 (unpublished); by M. Della Negra, in Proceedings of the European Conference on Particle Physics at Budapest, July 1977 (unpublished).

<sup>2</sup>C. Kourkoumelis, CERN Report No. CERN 77-06 (unpublished); J. H. Cobb *et al.*, Phys. Lett. <u>68B</u>, 101 (1977).

<sup>3</sup>Although we have taken data by separate trigger with acceptance at smaller angles, their analysis is not yet complete.

<sup>4</sup>A more certain, but biased  $\pi^0$  definition requires two reconstructed photons with  $\pi^0$  effective mass. However, this definition yields poor efficiency at high  $P_T$ . When two reconstructed showers coexist in the same octant, the  $\pi^0$  energy was taken as that of the highest-energy shower. The inclusion of the lower-energy shower or additional nearby energy in the  $\pi^0$  definition has no significant effect on our results.

<sup>5</sup>The spectrum has been weighted for geometrical and energy efficiency as determined by calibration runs at the CERN proton synchrotron so that the two  $\pi^0$ 's, when given random angles would have a flat distribution, independent of transverse momentum above  $P_T = 1.2$ GeV/c. Trigger corrections due to the ISR intersection angle have been made. The weight of an event varies from 0.3 to 3, with an average weight of 1.

<sup>6</sup>We have also examined the product  $\Pi = P_{T_1} \cdot P_{T_2} \cdot P_{TG}$ . We find distributions similar to those of the  $E_T$  selection.

<sup>7</sup>C. Michael and L. Vanryckegham, University of Liverpool Report No. LTH 31, May 1977 (to be published), and private communication. We compared our spectrum in  $\Delta \varphi$  with that predicted by the independentemission model for events with  $9 < E_T < 12$  GeV and  $P_{T_1} > 1$  GeV;  $P_{T_2} > 3$  GeV. The 412 events in our sample have a distribution essentially the same as that of Fig. 2(b). The model predicts a nearly uniform distribution with variations of < 20% over our azimuthal coverage.

 $^{8}$ The diplot of Fig. 3 is not corrected for efficiency which varies by less than 30% in the populated regions.

<sup>9</sup>Recent measurements of  $\Upsilon(9.5) \rightarrow e^+e^-$  in the same apparatus [J. H. Cobb *et al.*, Phys. Lett. <u>72B</u>, 273 (1977)], combined with an assumed 3% branching ratio to electrons, would indicate that there are several hundred decays of  $\Upsilon(9.5)$  to hadrons in the data sample from which the present events are drawn.

## Atomic Electron Correlation in Nuclear Electron Capture

Mau Hsiung Chen and Bernd Crasemann Department of Physics, University of Oregon, Eugene, Oregon 97403 (Received 21 February 1978)

The effect of electron-electron Coulomb correlation on orbital-electron capture by the nucleus has been treated by the multiconfigurational Hartree-Fock approach. The theoretical <sup>7</sup>Be L/K capture ratio is found to be 0.086, and the <sup>37</sup>Ar M/L ratio, 0.102. Both ratios are smaller than the independent-particle predictions. Measurements exist for the Ar M/L ratio, and agreement between theory and experiment is excellent.

Benoist-Gueutal's insight<sup>1</sup> that atomic electrons must be included in a complete description of orbitalelectron capture by the nucleus<sup>2</sup> led to the introduction of atomic exchange and imperfect-overlap factors in the theoretical capture probability.<sup>3-6</sup> All existing work on electron capture has been carried out in the independent-particle approximation; effects due to electron-electron Coulomb correlation have been neglected. Here we report on a first effort to take correlation into account, by using the multiconfigurational Hartree-Fock (MCHF) approach.<sup>7</sup> We calculate the <sup>7</sup>Be L/K and <sup>37</sup>Ar M/L capture ratios.

The nuclear-electron-capture rate is<sup>2</sup>

 $\lambda_i = \lambda_i^0 B_i, \quad i = K, L, M, \ldots,$ 

(1)

where  $\lambda_i^0$  is the rate obtained when atomic matrix elements are neglected,<sup>8</sup> and  $B_i$  is the exchange-

© 1978 The American Physical Society

overlap correction factor. For example, if the initial and final states are represented by a single Slater determinant, then

$$B_{k} = K \left\{ \langle 2s' | 2s \rangle \langle 3s' | 3s \rangle - \langle 2s' | 1s \rangle \langle 3s' | 3s \rangle [R_{2s}(0)/R_{1s}(0)] - \langle 2s' | 2s \rangle \langle 3s' | 1s \rangle [R_{3s}(0)/R_{1s}(0)] \right\}^{2}, \quad (2)$$

where

$$K = \langle \mathbf{1}s' | \mathbf{1}s \rangle^{2} \langle \mathbf{2}s' | \mathbf{2}s \rangle^{2} \langle \mathbf{2}p' | \mathbf{2}p \rangle^{2q(\mathbf{2}p)} \langle \mathbf{3}s' | \mathbf{3}s \rangle^{2[q(\mathbf{3}s)-1]} \langle \mathbf{3}p' | \mathbf{3}p \rangle^{2q(\mathbf{3}p)}.$$

$$\tag{3}$$

Here, q(nl) is the occupation number of the nlshell, and primes denote the daughter atom. Bahcall<sup>2-6</sup> set K=1, while Vatai<sup>2,9</sup> retained the factor. Similar expressions exist for  $B_L$  and  $B_M$ .

The capture ratio for shells i and j, in allowed transitions, is<sup>2</sup>

$$(\lambda_i/\lambda_j) = (\lambda_i/\lambda_j)^0 (B_i/B_j), \qquad (4)$$

where

$$(\lambda_{i}/\lambda_{j})^{0} = [R_{i}^{2}(0)/R_{j}^{2}(0)](q_{i}^{2}/q_{j}^{2}),$$
  

$$i, j = K, L_{1}, M_{1}.$$
(5)

The R's are electron radial wave functions, evaluated at the origin, and the q's are neutrino energies. The contributions from  $L_2$  and  $M_2$  electrons are neglected here.

In our MCHF calculation, the ground state is

$$\Psi_{s}(\gamma LS) = \sum_{i} C_{i} \Phi(\gamma_{i} LS), \qquad (6)$$

and the final-state wave function, describing the hole state after capture, is

$$\Psi_{j}'(\gamma LS) = \sum_{i} C_{ji}' \Phi_{i}'(\gamma_{i} LS) \,. \tag{7}$$

The atomic matrix elements become

$$\langle \Psi_{j} | O | \Psi_{g} \rangle = \sum_{i,k} C_{jk}' C_{i} \langle \Phi_{k}' | O | \Phi_{i} \rangle, \qquad (8)$$

where we have  $O = \sum_{b} a_{b} R_{b}(0)$ , and  $a_{b}$  is the destruction operator.<sup>4</sup> The exchange-overlap correction factor is

$$B_{i} = \sum_{j} |\langle \Psi_{j} | O | \Psi_{g} \rangle / R_{i}(0) |^{2}, \qquad (9)$$

where the summation extends over the states included in the multiconfigurational expansion.

For the <sup>7</sup>Be L/K-capture-ratio calculation, the ground state is represented by

$$\Psi_{g} = C_{1} \Phi_{1} (1s^{2}2s^{2}) + C_{2} \Phi_{2} (1s^{2}2p^{2}).$$
(10)

The 1s-hole state after K capture is

$$\Psi_{j} = C_{j1}' \Phi_{1}' (1s2s^{2}) + C_{j2}' \Phi_{2}' (1s2p^{2}).$$
(11)

The 2s-hole state after  $L_1$  capture is represented by the single configuration

$$\Psi_i = \Phi'(1s^2 2s). \tag{12}$$

For the <sup>37</sup>Ar M/L-capture-ratio calculation, we take the ground-state MCHF wave function to be

$$\Psi_{g} = C_{1}\Phi_{1}(1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}) + C_{2}\Phi_{2}(1s^{2}2s^{2}2p^{6}3p^{6}3d^{2}(^{1}S)) + C_{3}\Phi_{3}(1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}(^{1}S)3d^{2}(^{1}S)) + C_{4}\Phi_{4}(1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}(^{3}P)3d^{2}(^{3}P)) + C_{5}\Phi_{5}(1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}(^{1}D)3d^{2}(^{1}D)).$$
(13)

The 2s-hole state is

$$\Psi_{j} = C_{j1} \Phi_{1}' (1s^{2}2s2p^{6}3s^{2}3p^{6}) + C_{j2} \Phi_{2}^{-1} (1s^{2}2s2p^{6}3s^{2}3p^{4}(^{1}S)) + C_{j3} \Phi_{3}' (1s^{2}2s2p^{6}3s^{2}3p^{4}(^{3}P)^{4}P 3d^{2}(^{3}P)) \\ + C_{j4} \Phi_{4}' (1s^{2}2s2p^{6}3s^{2}3p^{4}(^{3}P)^{2}P 3d^{2}(^{3}P)) + C_{j5} \Phi_{5}' (1s^{2}2s2p^{6}3s^{2}3p^{4}(^{1}D) 3d^{2}(^{1}D)).$$
(14)

The 3s-hole state after  $M_1$  capture is

$$\Psi_{j} = C_{j1}\Phi_{1}'(1s^{2}2s^{2}2p^{6}3s^{3}p^{6}) + C_{j2}\Phi_{2}'(1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}(^{1}D)3d) + C_{j3}\Phi_{3}'(1s^{2}2s^{2}2p^{6}3s^{3}p^{4}(^{1}S)3d^{2}(^{1}S)) + C_{j4}\Phi_{4}'(1s^{2}2s^{2}2p^{6}3s^{3}p^{4}(^{3}P)^{4}P^{3}d^{2}(^{3}P)) + C_{j5}\Phi_{5}'(1s^{2}2s^{2}2p^{6}3s^{3}p^{4}(^{3}P)^{2}P^{3}d^{2}(^{3}P)).$$
(15)

|                 | <i>K</i> capture |               |          | $L_1$ capture |              |
|-----------------|------------------|---------------|----------|---------------|--------------|
|                 | $ 1s\rangle$     | $ 2 s\rangle$ | 2p angle | $ 1s\rangle$  | $ 2s\rangle$ |
| $\langle 1s'  $ | 0.972 09         | - 0.190 99    |          | 0.962 47      | - 0.155 91   |
| $\langle 2s'  $ | 0.171 93         | 0.96785       |          | 0.08271       | 0.88283      |
| <2 <b>p'</b>    |                  |               | 0,992 60 |               |              |

TABLE I. MCHF  $\langle nl' | nl \rangle$  overlap integrals for <sub>4</sub>Be electron capture.

|                    | $ 1s\rangle$ | $ 2s\rangle$ | $ 2p\rangle$  | $ 3s\rangle$ | 3 <i>p</i> > | $ 3d\rangle$ |
|--------------------|--------------|--------------|---------------|--------------|--------------|--------------|
|                    |              |              | $L_1$ capture | е            |              |              |
| $\langle 1s'  $    | 0,99873      | -0.02977     |               | -0.00630     |              |              |
| $\langle 2  s'   $ | 0.02705      | 0.992 50     |               | -0.10496     |              |              |
| $\langle 2p'  $    |              |              | 0.998 58      |              | -0.02279     |              |
| $\langle 3s'  $    | 0.00798      | 0.10177      |               | 0.99274      |              |              |
| $\langle 3p'  $    |              |              | 0.02142       |              | 0,99927      |              |
| $\langle 3d'  $    |              |              |               |              |              | 0.99954      |
|                    |              |              | $M_1$ capture | е            |              |              |
| $\langle 1s'  $    | 0.99875      | -0.02921     |               | -0.00628     |              |              |
| $\langle 2s'  $    | 0.02623      | 0.99228      |               | - 0.09736    |              |              |
| $\langle 2p'  $    |              |              | 0.99445       |              | -0.08177     |              |
| $\langle 3s'  $    | 0.00702      | 0.09020      |               | 0.98913      |              |              |
| ⟨3 <i>p</i> ′      |              |              | 0.07552       |              | 0.99047      |              |
| ⟨3 <i>d</i> ′      |              |              |               |              |              | 0.93200      |

TABLE II. MCHF  $\langle nl' | nl \rangle$  overlap integrals for <sub>18</sub>Ar electron capture.

| TABLE III.                     | Electron radial wave-function ratios   |
|--------------------------------|----------------------------------------|
| $R_{ns}^{2}(0)/R_{n's}^{2}(0)$ | ), exchange-overlap correction factors |
| $B_{i}$ , and capture          | re ratios $\lambda_i / \lambda_i$ .    |

| Element                      | Quant                           | tity                                                                                       | Result                                                                                |
|------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <sup>7</sup> <sub>4</sub> Be | $R_{2s}^{2}(0)/R_{1s}^{2}(0)$ , | HF<br>MCHF <sup>.c</sup>                                                                   | 0.0332<br>0.0300                                                                      |
|                              | $B_K$ ,                         | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup>                            | 0.816<br>0.900<br>0.792                                                               |
|                              | $B_L$ ,                         | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup>                            | 2.222<br>3.045<br>2.259                                                               |
|                              | $\lambda_L/\lambda_K$ ,         | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup>                            | 0.090<br>0.112<br>0.086                                                               |
| $^{37}_{18}{ m Ar}$          | $R_{3s}^{2}(0)/R_{2s}^{2}(0)$ , | HF<br>MCHF <sup>c</sup>                                                                    | 0.0977<br>0.0669                                                                      |
|                              | $B_L$ ,                         | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup>                            | 1.121<br>1.171<br>1.098                                                               |
|                              | Β <sub>Μ</sub> ,                | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup>                            | 1.322<br>1.549<br>1.674                                                               |
|                              | $\lambda_M/\lambda_L$ ,         | HF (V) <sup>a</sup><br>HF (B) <sup>b</sup><br>MCHF <sup>c</sup><br>Experiment <sup>d</sup> | $\begin{array}{c} 0.115\\ 0.129\\ 0.102\\ 0.104 \substack{+0.007\\-0.003}\end{array}$ |

<sup>a</sup>Hartree-Fock, Vatai's approach (Refs. 2 and 9). <sup>b</sup>Hartree-Fock, Bahcall's approach (Refs. 2 and 3-6).

 $^{\rm c}{\rm Present}$  multiconfigurational HF calculation.  $^{\rm d}{\rm Ref.}$  11.

The MCHF wave functions, including the amplitudes C, were computed with the Froese Fischer program.<sup>7</sup> The electrostatic interaction matrix elements were calculated with Hibbert's program.<sup>10</sup> The one-electron overlap integrals are listed in Tables I and II. The electron radial-wave-function ratios at the origin and the overlap-exchange correction factors  $B_i$  as well as the electron-capture ratios are listed in Table III. For comparison, theoretical single-configuration HF capture ratios<sup>2</sup> and the experimental result<sup>11</sup> for <sup>37</sup>Ar are also listed; there is no measurement of the <sup>7</sup>Be L/K ratio.

Electron correlation is seen to have a substantial effect on nuclear capture ratios when outer electrons are involved. Compared with singleconfiguration HF results according to Vatai's approach,<sup>2</sup> the MCHF L/K capture ratio of <sup>7</sup>Be is reduced by 4.4%; the <sup>37</sup>Ar M/L ratio is reduced by 11% and brought into excellent agreement with experiment.<sup>2, 11</sup>

This work was supported in part by the U. S. Army Research Office under Grant No. DAAG29-78-G-0010 and by the National Aeronautics and Space Administration under Grant No. NGR 38-003-036.

<sup>&</sup>lt;sup>1</sup>P. Benoist-Gueutal, C. R. Acad. Sci. <u>230</u>, 624 (1950).

<sup>&</sup>lt;sup>2</sup>For a recent review, see W. Bambynek, H. Behrens, M. H. Chen, B. Crasemann, M. L. Fitzpatrick, K. W. D. Ledingham, H. Genz, M. Mutterer, and R. L. Intemann, Rev. Mod. Phys. <u>49</u>, 78 (1977).

VOLUME 40, NUMBER 22

<sup>3</sup>J. N. Bahcall, Phys. Rev. Lett. <u>9</u>, 500 (1962).
<sup>4</sup>J. N. Bahcall, Phys. Rev. <u>129</u>, 2683 (1963).
<sup>5</sup>J. N. Bahcall, Phys. Rev. <u>131</u>, 1756 (1963).
<sup>6</sup>J. N. Bahcall, Nucl. Phys. <u>71</u>, 267 (1965).

<sup>7</sup>C. Froese Fischer, Comput. Phys. Commun. <u>4</u>, 107 (1972).

<sup>8</sup>H. Brysk and M. E. Rose, Rev. Mod. Phys. <u>30</u>, 1169 (1958).

<sup>9</sup>E. Vatai, Nucl. Phys. A156, 541 (1970).

<sup>10</sup>A. Hibbert, Comput. Phys. Commun. 2, 180 (1971).

<sup>11</sup>J. P. Renier, H. Genz, K. W. D. Ledingham, and

R. W. Fink, Phys. Rev. <u>166</u>, 935 (1968).

## Population of Resonant <sup>12</sup>C+<sup>12</sup>C States via the Reaction <sup>12</sup>C(<sup>16</sup>O, $\alpha$ )<sup>24</sup>Mg

A. J. Lazzarini, E. R. Cosman, A. Sperduto, S. G. Steadman, W. Thoms, and G. R. Young Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 10 Nevember 1077)

(Received 10 November 1977)

Excitation functions for the reaction  ${}^{12}C({}^{16}O, \alpha){}^{24}Mg$  have been measured from  $E_{1ab}({}^{16}O) = 62$  to 110 MeV using a counter telescope at  $\theta_{1ab} = 7.5^{\circ}$ . Selective population of relatively few states at very high excitation energies in  ${}^{24}Mg$  [ $E_x({}^{24}Mg) > 20$  MeV] is seen. A possible correspondence is found between these states and the narrow resonances reported in  ${}^{12}C + {}^{12}C$  reactions. In addition, a possible correspondence between averaged yields in  ${}^{12}C({}^{16}O, \alpha){}^{24}Mg$  and gross structure seen in several  ${}^{12}C + {}^{12}C$  reaction channels is cited.

The reaction  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$  has been studied extensively because of its striking final-state selectivity. It is interesting to consider whether this behavior reflects special structures in the initial, compound, and final systems. In this work we have significantly extended the  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$  excitation functions. An apparent correlation has been found between individual pronounced transitions in that reaction and resonant states which have been seen in  ${}^{12}C + {}^{12}C$  reactions. Furthermore, the envelope of the  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$ transitions shows a weak correlation with gross structure variations in the  ${}^{12}C$  strength function as indicated by several  ${}^{12}C + {}^{12}C$  reaction-channel excitation functions.

High-resolution spectra from the reaction  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$  were measured from  $E_{1ab}({}^{16}O)$ = 62.0 to 100.0 MeV in 1-MeV steps. Two measurements at  $E_{1ab}({}^{16}O)$  = 105.0 and 110.0 MeV were also taken. The experiment was performed at the Brookhaven National Laboratory Tandem Van de Graaff facility and employed a surface-barrier counter telescope placed at  $\theta_{1ab}$ =7.5°±0.25°. Targets were nominally 45- $\mu$ g/cm<sup>2</sup> natural carbon. The experimental resolution was typically 90 keV.

The primary objective of the study was to determine if the  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$  spectra at higher energies show any gross- or fine-structure correlations to previously known  ${}^{24}Mg$  states which have been observed via  ${}^{12}C + {}^{12}C$  resonance reactions. The  $\alpha$  spectra contain numerous previously unseen transitions in the range of  $E_x({}^{24}Mg) = 20$  to 35 MeV—a region in which most  ${}^{12}C + {}^{12}C$  resonances have been recorded. The  $\alpha$ -transition yields exhibit compound-nuclear fluctuations; to average out this effect and to enhance the persistently strong transitions, the spectra were averaged over the incident <sup>16</sup>O energy. This was performed by linearizing the 39 individual  $\alpha$  spectra to a common <sup>24</sup>Mg excitation-energy scale. Kinematic corrections were performed so the energysummed spectra would reflect center-of-mass cross sections. A smooth evaporative background was subtracted by hand from each spectrum to further enhance strong discrete transitions in the summed spectra. Figure 1 shows three typical linearized spectra and background curves. It is understood that the magnitude of the underlying



FIG. 1. Typical  ${}^{12}C({}^{16}O, \alpha)^{24}Mg$  spectra at  $E_{1ab} = 63$  (curve *a*), 77 (curve *b*), and 91 MeV (curve *c*). They have been linearized in  $E_x({}^{24}Mg)$  and the smooth curves are hand drawn to represent the background that is to be subtracted.