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We present two new solutions to the classical Yang-Mills field equations in the pres-
ence of a localized external source. These solutions totally screen the charge of the
source. They have lower energy than the corresponding Coulomb solution.

Non-Abelian gauge theories offer the greatest
promise to describe the elementary forces in na-
ture. We here investigate the solutions to the
classical Yang-Mills equations in the presence of
a static external source in Minkowski space:

(a„J~")' = q'"(x) = 6"'q'( ),x

'=B A ' —BQ '+gc"'A 'A ', (lb)

where q'(x)q'(x) is time independent. By a local
gauge transformation, one can always line up the
source into commuting directions of color space,
e g, q'(x)- 6"[q'(x)q'(x)]"'=6"q(x) for SU(2)
which for simplicity we will study first. The An-
satz'A&'=6"A& then reduces Eqs. (1) to the Max-
well equations of electrodynamics. We call the
corresponding solution the Coulomb solution for
the source q'(x).

However, various results in the literature have
already shown that classical unbroken Yang-Mills
theories in Minkowski space are qualitatively dif-
ferent from electrodynamics, e.g. , the Wu-Yang
monopole' and Coleman's non-Abelian plane wave'
which are both nontrivial solutions to Eels. (1)
with q'(x) =0. Moreover, Mandula~ has shown
that the Coulomb solution corresponding to a stat-
ic source distributed over a thin spherical shell
is unstable if gQ )—', , where Q = fd' x[ q( )x q()x]+'

Mandula also showed that the instability modes
produce an inward flow of charge that tends to
screen the external source. Since the energy is
positive definite, Eqs. (1) must admit static solu-
tions of lower energy than the Coulomb one. Be-
low we exhibit two new types of solutions to Eqs.
(1) with localized and integrable static sources.
The first type has the long-range behavior of a
magnetic dipole field, and has lower energy than
the Coulomb solution once gQ is large enough.
The second type has no long-range field strengths
at all, and its energy can be made arbitrarily
small.

The magnetic dipole solution. —The Ansatz

A ~=A 2=A '=A 3=0
o o

A, '= p(p, x,), A, '= e;„.(x, /p)A(p, x,),

where p = [x,'+x,']'I', assures that all the Eqs.
(1) are automatically satisfied provided

—v' p+g A q9=q,

&
-2A +&2&2A —0

The Coulomb solution corresponds to setting A
= 0. Outside of this Ansatz, the full nonlinearity
of the equations comes into play and there are no

analytical methods available. It is nevertheless
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possible to show that there exists a whole class
(a continuous infinity) of charge distributions q(x)
which are localized and integrable (i.e. , Q & ~)
and which admit besides the Coulomb potential a
new type of solution with A. 4 0 and y 4 0 and finite
total energy. To this end, let us consider any
field A(p, x,) which satisfies the following two con-
ditions: A(p, x,) goes to zero as y = [x,'+x,'+
+x,']'I'-0. Away from the origin, A(p, x,) ap-
proaches exponentially fast the solution 8 = p/r'
of V'8 —p '@=0. For that givenA(p, x,), let us
successively solve Eq. (3b) for y(x) and calculate
q(x) from y(x), A(x), and Eg. (3a). For the charge
distribution q(x) thus found, p(x) and A(x) will be
an exact solution of the field equations. The sec-
ond condition on A (xj assures that both y(x) and

q(x) vanish exponentially fast away from the ori-
gin. The first and second conditions together as-
sure finiteness of the energy. Let us give a par-
ticular example:

A(p, x3) =ca —,tanh-p r
(4)

where m =ca3. In Eqs. (2) and (6) the orientation
of the magnetic dipole has been arbitrarily cho-
sen to be along the 3 direction of space and the 1
direction of isospin spa. ce (it could have been any
linear combination of the 1 and 2 isospin direc-
tions). The other field strengths are either zero
or short range. The physical situation is as fol-
lows. The Yang-Mills fields A' and y create a
charge distribution -g (A')'y whose total charge
exactly cancels Q. The electric field strengths
thus become short range. On the other hand, the
Yang-Mills fields create a current loop distribu-
tion

&'=g'q'A'=g'q'm '(3&x),

whose total magnetic moment is precisely m
= CQ3.

The energy of the magnetic dipole solution has
the following form:

=fdx2[I+q'I +g 0 (A) +(~xA) J

=f d'x[,
i g(p i2 ig2(p2(Ai)2]

(8)

are solutions of Egs, (3) for a rather complicated
but nonsingular charge distribution q(x) spread
over a region of width a, and of total charge

Q= f dxgA p=c gIi,
where

8m&18 " " tanh'x'
I, =

3 ~

dx

where I, and I, (like I,) are calculable numbers
which depend on the shape of the charge distribu-
tion but not on its norm (Q) nor its spatialexte. n-
sion (a). Since the energy of the Coulomb solu-
tion has the general form

H'=a 'Q'I„

we find that the magnetic dipole solution has low-
er energy than the Coulomb solution when

for our particular example. The particular charge
distribution we obtain depends, of course, on the
particular choice we made for the way A(p, x,)
approaches p/r' in the transition region between
r«a and r»a. The point is that to the continu-
ous infinity of ways in which A(p, x,) can approach
p/r' corresponds a continuous infinity of local-
ized charge distributions which admit solutions
of the new type. Presumably the thin spherical
shell studied by Mandula is among these charge
distributions.

The new solution has the long-range behavior
of a magnetic dipole field. Indeed, using a vec-
tor notation for the spatial components, we have
for r»a

A'=—ca(3xx)y = —mx v(r '),

3(mx x) —my'O'= VX A'-= r'

(10)

Tke total screening solution. —The magnetic
dipole solution thus appears to be precisely the
new type of solution whose existence had been im-
plied by Mandula's work. However, we will now
show, by merely exploiting our knowledge of the
Coulomb solution and gauge invariance, that any
extended charge distribution admits solutions of
energy as low as one wishes. Indeed, while in
Abelian gauge theories the sign of a charge is un-
ambiguously defined, this is not so in non-Abelian
gauge theories where the direction in isospin
space of a charge distribution can be locally re-
versed by a gauge transformation. The only
gauge-invariant quantity that characterizes a
source is q'(x) =q'(x)q'(x) for SU(2). ' Thus for
any given extended source q'(x), we can choose
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a gauge where half of the source is lined up in the positive 3 direction of isospin space and the other
half in the negative 3 direction. We can then make the Ansatz A„'=6"A& which will yield a Coulomb
solution corresponding to an electric dipole. By rotating back into the gauge where q' is completely
lined up in the positive 3 direction, we find a solution whose energy is that of a dipole field although q'
is in the monopole configuration. It is clear that from dipole we can go to quadrupole and so on, lower-
ing the energy indefinitely in the process. Let us illustrate this by giving a particular example in which
all fields will be free of discontinuities. Equations (1) are solved by

A = E t, E,' =—~ (0"[cos( 2vnh(r) ) —1]—5"sin(2vnh(r) )},
Q -1 dhq'= ———j&' sin[2&nh(r)]+ 6"cos[2vnh(r) ]},

where t is time, n is an integer, and h(r) is an arbitrary function that goes to 1 as r -Oand goes to 0 as
say h(r) = exp[-2(r/a)']. Rotated back into the gauge where q' is completely lined up in the posi-

tive 3 direction of isospin space, the solution has the form

A, t a 0 Qi a Eg at galg-1 0 [2pnh(r)]

„Q -1 dhE' = —' f 5"[1—cos(2vnh(r) ) ] —0"sin(2vnh(r) )},
(i2)

The electric field is completely screened be-
cause the charge distribution -g &'"A.'&'E'~' car-
ried by the Yang-Mills fields exactly cancels the
external source. There is no magnetic field.
The energy of this total screening solution,

Q' 1 '1
",
"dxH'=— —,sin'~nh (xa),2F apl 0 o x

is finite provided 1-h(r)-r' '', with E&0, asr- 0 in which case H" goes to zero as n- ~.'
In conclusion, we have shown by exploiting our

knowledge of the Coulomb solution and gauge in-
variance that the Yang-Mills field equations in
the presence of a static extended external source
admit solutions which completely screen the ex-
ternal source and which have energy as low as
one wishes. But we have also shown that there is
yet more structure to the Yang-Mills equations
in the presence of external sources: They also
admit solutions of the magentic dipole type whose
energy becomes lower than that of the Coulomb
solution when gQ is larger than some critical
value. These solutions cannot be transformed to
a Coulomb solution by any gauge transformation
since B&' 4 0 and &' 'E& E,.'& 0. The generaliza-
tion of the above results to larger gauge groups
is trivial only if the source lies completely with-

in an SU(2) subgroup. This and other questions
related to this work will be expanded upon in a
later publication.
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In general, the number of invariants that character-
ize a source equals the rank of the group; e.g. , for
SU(B), the invariants are q (x)q~(x) and d

& q (x)q (x)q (x).
To see this, dominate sin [7tnh(r)] by 7t n [1—k(r)]

for 0-r~a/n, and by 1 for r& a/n.
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