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I construct an entropy function S(t) suitable for a system of hard spheres satisfying the
(modified) nonlinear Enskog equation, and show that 8, S (t) ~ 0. The equality sign holds
only when the system has reached absolute equilibrium, in which case S becomes the
exact equilibrium entropy of the hard-sphere fluid.

Despite its phenomenological character, the Enskog equation' ' is quite successful in describing
transport phenomena in dense fluids. This equation, governing the time evolution of the one-particle
distribution function (d.f.) f,(r„v„t), is written

a,f, +v, 0 f, =~ (f„f),
1

where the collision operator J is defined by

J (f„f,) = a' I d'v, J d2& 7 v» 8 (e' v») tg, (r„r,—ae
~ n)f, (r„v,'; &)f,(r, —aF, v, ';f)'
—g,(r„r,+ac ~n)f (r„v„&)f,(r,'+as, v»t)]. (2)

Here, a denotes the hard-sphere diameter, & is a unit vector, and &(x) is the Heaviside function; more-
over, v, ' and v, ' are the velocities after the collision and g„a functional of the density n(r;&), is de-
fined presently.

In his original intuitive argument, Enskog took for g, the equilibrium pair correlation at contact, cal-
culated for the local density at point 2(r, + r,). Yet, more recent investigations" indicate that this pro-
posal has to be slightly modified in order to lead to a consistent theory (which, in particular, should
be compatible with Onsager relations). These works lead to a systematic derivation of this (modified)
Enskog theory from the single assumption that, for all times, the N-particle distribution function of
the system takes the form

N N

p„(r„..., r„,v„.. ., v„;t) = g &;; g W„(r;, v, ; &)/C, (t) (3)
&& 2= 1

when' (and the volume of the system 0) becomes large. Here 8;,.=&(x;; -a) takes into account the ex-
cluded volume between the pair of spheres i, j and 4', (&) is the factor normalizing pN. Obviously, the
crucial assumption in (3) is that the velocity dependence of p& enters only through the one-body func-
tion W, . This latter quantity is defined in such a way that f„as calculated from (3), is that realized
by the dynamical equation (l). Albeit exact at equilibrium (where W, becomes the Maxwellian), (3) can
only be approximately true for all times.
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From the Ansatz (3), the reduced d.f.f„g„etc., can be computed in the usual way3; in particular,
one obtains a well-defined expression for the pair correlation g„which depends on time through the
density n(r; t) only, and one also proves that g, satisfies the relation

f,(r„v„r„v»t) =g,(r„r, ~ n)f, (r„v» t)f,(r„v» t)

which, when inserted into the first Bogoliubov-Born-Green-Kirkwood-Yvon equation, precisely leads
to the Enskog equation [(1) and (2)], now called "modified" because of the new definition of g,.'

The aim of the present Letter is to point out that an H theorem, very similar to Boltzmann's result
for dilute gases, is valid for this modified Enskog equation. This result furnishes the first example of
an explicit proof of the approach to equilibrium of a strongly interacting system. '

I start by defining the nonequilibrium entropy by S(t)= k-sfd'r, " d'rsd'v, d'v„p&(t) lnp„(t), where
pN is given by Eq. (3).' This entropy is a functional of f, only; indeed, it can be decomposed (S =S'+S")
into a "kinetic" part

S'= —ks fd'r, d'v, f,(r„v»t) lnf, (r„v»t)
and a "potential" part

S"= —kB[ln& o(n) + fdsr, n(r„'t) lna, (r„t)],
where the normalizing factor C'o [see (3)] and the function a, defined by

a,(r, ~n) —= f,(r„v„t)/W, (r„v„t)
[a, is independent of v» see (3)] depend on time through n(r; t) only.

Using a series of manipulations usual in hard-sphere dynamics, "one shows that

B,S' = —2kBa'fd'r, d'r, d'v, d'v, fd'e(e v»)0(&' v»)g, (r„r,~n(t)) (r»+ae)f, ~,f,z ln
i@1 1s2

with, for example, the abreviation f, 3
=f,(r„v,';t—), etc.

With the inequality xln(x/y) ~ x —p (where x =f, ,f, , &0 and y =f. ..f, , &0), I obtained from (8) the in-
equality &,S' ~ I, with (to simplify I have used periodic conditions at the boundaries)

I = k& fd—'r, d'r, (r,ga)5(r» —a)g,(r„r, ~
n) [fd3v.,v,f (r, v, ; t)]n(r» t). (9)

Notice that the equality only holds if

f,(r» v„t)f,(r, +aZ, v» t) =f,(r„v,'; t)f,(r, +a@,v, ';t) (10)

for all r„v„v„&such that e v„&0.
The potential entropy S", functionally depending on the density, has its time behavior governed by

the continuity equation. Using the definition of 4', and al one finds precisely ~ &S" = -I. Therefore,

$'o O

Finiteness of particle density and of kinetic energy density' suffices to show that asymptotically ~,S
= 0 (t- ~) and one proves from (10) that f, then reaches absolute equilibrium.

Despite the approximate nature of the modified Enskog equation (in particular, its Markovian charac-
ter), my result indicates that the original Boltzmann ideas still remain valuable in describing the ap-
proach to equilibrium of f, in strongly interacting systems: My definition of entropy is the simplest
generalization of the dilute-gas expression (formally obtained by setting &;; = 1, and thus S"= const)
which leads to the exact equilibrium entropy; yet, it obeys an D theorem.
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and L. Rosenfeld, Chem. Scr. 4, 5 (1973).

Of course, exactly as in the dilute-gas limit, jtf pz was the exact d.f., S(t) would remain constant [see, for exam-
ple, S. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Interscience, New York, 1965)]; the use of
the approximate ps, Eq. (3), is just a trick to depne S (t) in terms of f, (or Wi); since this latter function (and not
for the exact pN) is an irreversible behavior a p~o~ expected.
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We present two new solutions to the classical Yang-Mills field equations in the pres-
ence of a localized external source. These solutions totally screen the charge of the
source. They have lower energy than the corresponding Coulomb solution.

Non-Abelian gauge theories offer the greatest
promise to describe the elementary forces in na-
ture. We here investigate the solutions to the
classical Yang-Mills equations in the presence of
a static external source in Minkowski space:

(a„J~")' = q'"(x) = 6"'q'( ),x

'=B A ' —BQ '+gc"'A 'A ', (lb)

where q'(x)q'(x) is time independent. By a local
gauge transformation, one can always line up the
source into commuting directions of color space,
e g, q'(x)- 6"[q'(x)q'(x)]"'=6"q(x) for SU(2)
which for simplicity we will study first. The An-
satz'A&'=6"A& then reduces Eqs. (1) to the Max-
well equations of electrodynamics. We call the
corresponding solution the Coulomb solution for
the source q'(x).

However, various results in the literature have
already shown that classical unbroken Yang-Mills
theories in Minkowski space are qualitatively dif-
ferent from electrodynamics, e.g. , the Wu-Yang
monopole' and Coleman's non-Abelian plane wave'
which are both nontrivial solutions to Eels. (1)
with q'(x) =0. Moreover, Mandula~ has shown
that the Coulomb solution corresponding to a stat-
ic source distributed over a thin spherical shell
is unstable if gQ )—', , where Q = fd' x[ q( )x q()x]+'

Mandula also showed that the instability modes
produce an inward flow of charge that tends to
screen the external source. Since the energy is
positive definite, Eqs. (1) must admit static solu-
tions of lower energy than the Coulomb one. Be-
low we exhibit two new types of solutions to Eqs.
(1) with localized and integrable static sources.
The first type has the long-range behavior of a
magnetic dipole field, and has lower energy than
the Coulomb solution once gQ is large enough.
The second type has no long-range field strengths
at all, and its energy can be made arbitrarily
small.

The magnetic dipole solution. —The Ansatz

A ~=A 2=A '=A 3=0
o o

A, '= p(p, x,), A, '= e;„.(x, /p)A(p, x,),

where p = [x,'+x,']'I', assures that all the Eqs.
(1) are automatically satisfied provided

—v' p+g A q9=q,

&
-2A +&2&2A —0

The Coulomb solution corresponds to setting A
= 0. Outside of this Ansatz, the full nonlinearity
of the equations comes into play and there are no

analytical methods available. It is nevertheless
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