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The experiment yields

F/K' = 4 && 10 ' cm'/s .
Using the following empirical values for the pa-
rameters in Eq. (9) p, = 10 ' cm/s K' and y„=44
mJ/m' we obtain the theoretical prediction F/EP
=3.8&10 ' cm'/s.

The agreement with the experimental value is
gratifying and provides strong support for the
proposed mechanism for the correlation time of
the scattering fluctuations.

As to the amplitude A, all we can say is, that
(A)' is proportional to the growth rate (Fig. 2)
and hence to the rate at which the Gibbs free en-
ergy is released at the interface. Furthermore,
since experimentally a growth rate threshold
must be exceeded to initiate the fluctuations and
also since these fluctuations can be maintained
on reducing the growth rate below the threshold
it seems likely that the fluctuations originate in

an instability.
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The spin-glass transition of a magnetic material with quenched impurities is studied
with use of perturbative mode-mode coupling theory, without the use of the replica meth-
od. In mean-field theory we find that the transport coefficient I" diverges just above the
spin-glass freezing temperature Tf like (T —T&) ~ for d & 4 and (1' —T&) ~" for 2 & d & 4.

Recently, there has been a considerable amount
of interest in the spin-glass phase. ' ' This phase,
which occurs for certain amorphous magnetic
systems, is characterized by a frozen magnetiza-
tion with a vanishing spatial average. Most of the
theoretical attempts to describe this phase have
focused upon the static properties, and have em-
ployed the "replica" trick of letting the number
of degr ees of freedom, n, of the spins approach
zero. Recently, however, Thouless, Anderson,
and Palmer and Ma and Rudnick' have performed
mean-field calculations without using the replica
method. Ma and Rudnick' have also examined dy-
namics using a time-dependent Ginzburg-Landau
model. However, this model neglects the effects
of the precession of a spin in the local field of

neighboring spins which are known to play an im-
portant role in the dynamics of a Heisenberg mag-
net. ' Since it is believed that in a real spin-glass,
the spins interact via a Heisenberg interaction, '
we believe that a proper theory should take ac-
count of the dynamical effects appropriate to that
system. In this Letter, we do not use the replica
(n-0) trick.

The dynamics of an isotropic Heisenberg spin
system with quenched impurities may be defined
by the equation of motion, "

BS/Bt =AS&&H —F&sH+7, (1)

where j(x, t) is a three-component vector spin
field, H(x, t) is the local field, and P(x, t) is a
random noise simulating the effect of thermal
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fluctuations on the spins. We assume the local
field is given by the derivative of the free energy
EQJ, which is assumed to be of the Ginzburg-
Landau form for a given spin configuration,

F(5) = .'f-d" x[(&S) 2+(r, ~p)S'~-'u(S') 2-h 5]

H(x, t) = —CIA/65(x, t), (2)

where h is the external field, and y(x) is a ran-
dom local variation in effective temperature.
This model is similar to that discussed by Ma
and Mazenko' for the isotropic Heisenberg fer-
romagnet, differing only by the inclusion of the
random variable y. This quantity is assumed to
be a time-independent Gaussian random variable
due to the particular configuration of the quenched
impurities, and thus has a very different physical
origin from that of P(x, t), the Gaussina random
noise. The average of each of these random vari-
ables is assumed to be zero, and the correlations
in Fourier space are given by

(g„'(t)g„(t')& = 21k'6, , ,6,,6 (t —t'),

and higher cumulants are assumed to vanish.
We note that I is the bare transport coefficient;

I'x, is a diffusion constant. If X=0, this model
is a time-dependent Ginzburg-Landau model with
a conserved spin. (Ma and Rudnick considered
the case of a nonconserved spin. ) The X term is
of the form -XS&&&'5, which is closely related to
the usual Heisenberg equation of motion. We
shall take the viewpoint that the spin-glass freez-
ing temperature Tf is higher than the Curie tem-
perature &(-. We are interested here only in de-
termining the behavior near &&, we shall not dis-
cuss the competition between spin-glass and fer-
romagnetic order. '

Our new result is that the transport coefficient
1" diverges at the spin-glass freezing temperature
Tt like I'o-(T —T&) '. The freezing temperature
T& is the temperature at which the order param-
eter q becomes nonvanishing. This order param-
eter, q, for the spin-glass phase is given by

where ( & stands for a thermal average, and [ ]„
is a configuration average.

We shall now briefly discuss the derivation of
this result, beginning with the statics. To lead-
ing order in the external static field K, for a fixed
y, the thermal average (S„'& is given by

(S,'&=- fd'~e ""(S'(x,t)& =G,(k, 0)h„'~G,(k, 0)f d' k'(2~) "y, „G,(k', 0)h& '+ . .~, (5)

where G,(k, &u) =(r, +k' —iv/I'k') ' is the zeroth-
order spin response function and x, includes the
one-loop self-energy correction arising from the
u term in I'. Equation (5) is shown diagrammati-
cally in Fig. 1(a). We now square Eq. (5) and
average over y. Keeping only terms shown in
Fig. 1(b) and 1(c) for [(S„'&J„and [(SI,'&(S „')],~,
the single-loop and "rainbow" diagrams indicated
in Fig. 1(b) merely shift r, to a new value r, and
we have

(a} (b) (c)

where

II,(0, (u) = fd"k(2m) G,(k, ~)G (-k, —(u)

with x, replaced by x in G,. Thus, q can be non-
vanishing for h-0 if the denominator of the right-
hand side of Eq. (6) vanishes. This defines the
spin-glass freezing temperature &&, which we
take to be greater than &c, the temperature for
ferromagnetic ordering.

Below &f, the mean-field self-energy acquires

(e)

FIG. 1. (a) Graph of Eq. (5) in the text. The straight
lines are zeroth-order spin response functions, and
the wavy lines represent the random part, p(x), of the
quadratic coefficient x(x) in the Landau-Ginzberg func-
tion (2). (b) Graph for the configuration average [over
y(x)] of the spin correlation function. (c) Graph ob-
tained by averaging over configurations the product of
two graphs such as shown in (a). (d) New self-energy
diagram below Tf. . (e) Diagrammatic equation for q.
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an extra term proportional to the spin-glass or-
der para. meter q [Fig. 1(d)]. This gives a. q de-
pendence to the parameter r in G, and thus to II;
we write II,(0, ~) where we previously had 11,(0,
~). Then the equation for the self-consistent val-
ue of the order parameter [Fig. 1(e)] can be given
by

q =&11,(0, 0)q.

Thus the ladder sum (1-&II,) ' remains diver-
gent at cu = 0 everywhere below T/. [Ma and Hud-
nick' have performed this calculation for a scalar
spin, but the form of Eq. (8) does not depend upon
the number of components of the spin. ]

We now turn to the dynamics. To lowest order
in )j. , the shift in the transport coefficient I' (=I'
+ &F) is given by a set of graphs, one of which is

FIG. 2. Typical graph contributing to the shift in the
transport coefficient 61". A line with a small circles
represents a Co function.

pictured in Fig. 2. Corrections to the ~ vertices
due to the fluctuations in p vanish. Corrections
to the "noise vertex" do not vanish, because
[I G'I]»& l[G]»l'. In the ladder approximation
which we used for the statics (Fig. 2) we have

, ~r
(r +k')

&,„,» (k' —q') [q' —(q ~ k)'] &C,(q', v) G,(q, v) G,(- q, —v) G,(k ~ q, v) t (9)

where C,(k, &u) = (2/~) lmG, (k, ~). In Eq. (9), the momentum factors are due to the & vertices" since
the Fourier transform of X5&&&'5 has an explicit k' factor. Equation (9) differs qualitatively from the
corresponding equation for a pure ferromagnet because of the factor [1-&II,(0, v)] ', which is large
near Tz for small v. We may expand II,(0, v) for small v to obtain

II,(0, v) =II,(0, 0) —(v/F*)'~O(v') (4 &d),

11,(0, v) = II (0, 0) —(v/F *)"+ O(v') (2 & d & 4),

where

F&/F*2 —+(""l2)/22 (" 1)+ ~/BF ( d 2)F (8 d)/F ( d) (4

(F/F*)""=x i"' '2 ""
7/

""I"(—'d)F(l ——'d) (2 &d & 4)

Here I (x) is the gamma function. We now define a'=l-&II, (0, 0) ~T-Tz. Since the integrand of the
v integral in (9) is Peaked sharply at v = 0, we may obtain the domina. nt behavior by setting v = 0 in the
integrand except in 1I,(0, v):

~r 4~'r*Aa~'I'
y'aI' (d&4),

/), F 4)'F*AII~'- " 4F(2/d)F(1 2/d)
(2 &d&4),ya' ""r' dm

where

(12)

& = fd"k(») "k '(~+k') ', a =f d"k(2w) "(q'k)2(2r+k2)(x+ka)

Thus, recalling-the definition of a, we have &F CC (T- T/) '/' for d &4 and AF oc (T —Tz)
"" ' for d &4.

A proper analysis at this level of the spin-glass phase below T& would involve interactions between
Halperin-Saslow spin-wave modes. ' This more complex problem will be discussed in another paper.

One worry about a model such as Eq. (2) is that it looks superficially like a random ferromagnet, "
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and contains no obvious spin-glass physics, despite the fact that a spin-glass instability falls out natur-
ally in ladder approximation. We have therefore also considered a different model which explicitly con-
tains random exchange interactions between spins on a lattice. It is a Wilson-Fisher "soft-spin"" ver-
sion of the classical random Heisenberg model considered by Edwards and Anderson':

pa, it[5] = 2';;Z;,5; ~ 5, + 2Z;r5 + 4';(5,')',
where J;, is a Gaussian random variable. The
dynamics of the model are specified by an equa-
tion of motion like (1), with a finite-difference
expression replacing the &'H; at site i given by

pH; =p+,J;,.g, +. r.'g;+u5;I ). (&4)

This model can be solved to leading order in the
reciprocal of the number of nearest neighbors
and gives the same singular behavior in &I' that
we found above in the Ma-Rudnick model. The
reason is that the equations for the order param-
eter, the spin-spin correlation function, and &I"

have very similar structures in the two models.
This calculation will be published in a later paper.

Since the mean-field results are valid for d
& 6,' we expect that this approach will only be
valid in that dimensionality regime. For d &6,
a renormalization-group expansion in & =6 —d
should be performed. That calculation is in prog-
ress.

We note the similarity between the result for
the transport coefficient for a Heisenberg spin-
glass, and that for a Heisenberg antiferromag-
net. That is, long-wavelength spin fluctuations
exhibit "critical speeding-up, " although the criti-
cal exponents are different in the two cases. (The
near equality of the exponents for d =3 is just a
coincidence. ) This behavior should be observable
in inelastic neutron scattering experiments.
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